Existence of solutions for fractional differential inclusions with antiperiodic boundary conditions. (English) Zbl 1172.34004

Summary: We study the existence of solutions for a class of fractional differential inclusions with anti-periodic boundary conditions. The main result of the paper is based on Bohnenblust-Karlins fixed point theorem. Some applications of the main result are also discussed.


34A60 Ordinary differential inclusions
34B15 Nonlinear boundary value problems for ordinary differential equations
26A33 Fractional derivatives and integrals
Full Text: DOI EuDML


[1] Ahmad, B.; Nieto, JJ, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, No. 2009, 11 (2009) · Zbl 1167.45003
[2] Ahmad B, Sivasundaram S: Existence and uniqueness results for nonlinear boundary value problems of fractional differential equations with separated boundary conditions. to appear in Dynamic Systems and Applications · Zbl 1180.34003
[3] Ahmad B, Nieto JJ: Existence results for a coupled system of nonlinear functional differential equation with three-point boundary value problem. preprint · Zbl 1205.34003
[4] Daftardar-Gejji V, Bhalekar S: Boundary value problems for multi-term fractional differential equations. Journal of Mathematical Analysis and Applications 2008, 345(2):754-765. 10.1016/j.jmaa.2008.04.065 · Zbl 1151.26004
[5] Erjaee GH, Momani S: Phase synchronization in fractional differential chaotic systems. Physics Letters A 2008, 372(14):2350-2354. 10.1016/j.physleta.2007.11.065 · Zbl 1220.34004
[6] Gafiychuk V, Datsko B, Meleshko V: Mathematical modeling of time fractional reaction-diffusion systems. Journal of Computational and Applied Mathematics 2008, 220(1-2):215-225. 10.1016/j.cam.2007.08.011 · Zbl 1152.45008
[7] Ibrahim RW, Darus M: Subordination and superordination for univalent solutions for fractional differential equations. Journal of Mathematical Analysis and Applications 2008, 345(2):871-879. 10.1016/j.jmaa.2008.05.017 · Zbl 1147.30009
[8] Kilbas AA, Srivastava HM, Trujillo JJ: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies. Volume 204. Elsevier Science, Amsterdam, The Netherlands; 2006:xvi+523.
[9] Ladaci S, Loiseau JJ, Charef A: Fractional order adaptive high-gain controllers for a class of linear systems. Communications in Nonlinear Science and Numerical Simulation 2008, 13(4):707-714. 10.1016/j.cnsns.2006.06.009 · Zbl 1221.93128
[10] Lazarević MP: Finite time stability analysis of [InlineEquation not available: see fulltext.] fractional control of robotic time-delay systems. Mechanics Research Communications 2006, 33(2):269-279. 10.1016/j.mechrescom.2005.08.010 · Zbl 1192.70008
[11] Podlubny I: Fractional Differential Equations, Mathematics in Science and Engineering. Volume 198. Academic Press, San Diego, Calif, USA; 1999:xxiv+340. · Zbl 0924.34008
[12] Rida SZ, El-Sherbiny HM, Arafa AAM: On the solution of the fractional nonlinear Schrödinger equation. Physics Letters A 2008, 372(5):553-558. 10.1016/j.physleta.2007.06.071 · Zbl 1217.81068
[13] Samko SG, Kilbas AA, Marichev OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon, Switzerland; 1993:xxxvi+976. · Zbl 0818.26003
[14] Zhang S: Existences of solutions for a boundary value problem of fractional order. Acta Mathematica Scientia 2006, 26(2):220-228. 10.1016/S0252-9602(06)60044-1 · Zbl 1106.34010
[15] Ahmad B, Nieto JJ: Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear Analysis: Theory, Methods & Applications 2008, 69(10):3291-3298. 10.1016/j.na.2007.09.018 · Zbl 1158.34049
[16] Ahmad B, Nieto JJ: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree. preprint · Zbl 1245.34008
[17] Chen Y, Nieto JJ, O’Regan D: Anti-periodic solutions for fully nonlinear first-order differential equations. Mathematical and Computer Modelling 2007, 46(9-10):1183-1190. 10.1016/j.mcm.2006.12.006 · Zbl 1142.34313
[18] Franco D, Nieto JJ, O’Regan D: Anti-periodic boundary value problem for nonlinear first order ordinary differential equations. Mathematical Inequalities & Applications 2003, 6(3):477-485. · Zbl 1097.34015
[19] Franco D, Nieto JJ, O’Regan D: Existence of solutions for first order ordinary differential equations with nonlinear boundary conditions. Applied Mathematics and Computation 2004, 153(3):793-802. 10.1016/S0096-3003(03)00678-7 · Zbl 1058.34015
[20] Liu B: An anti-periodic LaSalle oscillation theorem for a class of functional differential equations. Journal of Computational and Applied Mathematics 2009, 223(2):1081-1086. 10.1016/j.cam.2008.03.040 · Zbl 1166.34323
[21] Luo Z, Shen J, Nieto JJ: Antiperiodic boundary value problem for first-order impulsive ordinary differential equations. Computers & Mathematics with Applications 2005, 49(2-3):253-261. 10.1016/j.camwa.2004.08.010 · Zbl 1084.34018
[22] Wang K, Li Y: A note on existence of (anti-)periodic and heteroclinic solutions for a class of second-order odes. Nonlinear Analysis: Theory, Methods & Applications 2009, 70(4):1711-1724. 10.1016/j.na.2008.02.054 · Zbl 1167.34012
[23] Abbasbandy S, Nieto JJ, Alavi M: Tuning of reachable set in one dimensional fuzzy differential inclusions. Chaos, Solitons & Fractals 2005, 26(5):1337-1341. 10.1016/j.chaos.2005.03.018 · Zbl 1073.65054
[24] Chang Y-K, Li W-T, Nieto JJ: Controllability of evolution differential inclusions in Banach spaces. Nonlinear Analysis: Theory, Methods & Applications 2007, 67(2):623-632. 10.1016/j.na.2006.06.018 · Zbl 1128.93005
[25] Frigon M: Systems of first order differential inclusions with maximal monotone terms. Nonlinear Analysis: Theory, Methods & Applications 2007, 66(9):2064-2077. 10.1016/j.na.2006.03.002 · Zbl 1121.34017
[26] Nieto JJ, Rodríguez-López R: Euler polygonal method for metric dynamical systems. Information Sciences 2007, 177(20):4256-4270. 10.1016/j.ins.2007.05.002 · Zbl 1142.65068
[27] Smirnov GV: Introduction to the Theory of Differential Inclusions, Graduate Studies in Mathematics. Volume 41. American Mathematical Society, Providence, RI, USA; 2002:xvi+226. · Zbl 0992.34001
[28] Chang Y-K, Nieto JJ: Existence of solutions for impulsive neutral integrodi-differential inclusions with nonlocal initial conditions via fractional operators. Numerical Functional Analysis and Optimization 2009, 30(3-4):227-244. 10.1080/01630560902841146 · Zbl 1176.34096
[29] Chang Y-K, Nieto JJ, Li W-S: On impulsive hyperbolic differential inclusions with nonlocal initial conditions. Journal of Optimization Theory and Applications 2009, 140(3):431-442. 10.1007/s10957-008-9468-1 · Zbl 1159.49042
[30] Henderson J, Ouahab A: Fractional functional differential inclusions with finite delay. Nonlinear Analysis: Theory, Methods & Applications 2009, 70(5):2091-2105. 10.1016/j.na.2008.02.111 · Zbl 1159.34010
[31] Li W-S, Chang Y-K, Nieto JJ: Existence results for impulsive neutral evolution differential inclusions with state-dependent delay. Mathematical and Computer Modelling 2009, 49(9-10):1920-1927. 10.1016/j.mcm.2008.12.010 · Zbl 1171.34304
[32] Ouahab A: Some results for fractional boundary value problem of differential inclusions. Nonlinear Analysis: Theory, Methods & Applications 2008, 69(11):3877-3896. 10.1016/j.na.2007.10.021 · Zbl 1169.34006
[33] Chang Y-K, Nieto JJ: Some new existence results for fractional differential inclusions with boundary conditions. Mathematical and Computer Modelling 2009, 49(3-4):605-609. 10.1016/j.mcm.2008.03.014 · Zbl 1165.34313
[34] Deimling K: Multivalued Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications. Volume 1. Walter de Gruyter, Berlin, Germany; 1992:xii+260.
[35] Hu S, Papageorgiou N: Handbook of Multivalued Analysis, Theory Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1997.
[36] Bohnenblust, HF; Karlin, S., On a theorem of Ville, 155-160 (1950), Princeton, NJ, USA
[37] Lasota A, Opial Z: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 1965, 13: 781-786. · Zbl 0151.10703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.