zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variational iteration method for fractional heat- and wave-like equations. (English) Zbl 1172.35302
The authors applies the variational iteration method to obtaining analytical solutions of fractional heat- and wave-like equations with variable coefficients. Comparison with the Adomian decomposition method shows that the VIM is a powerful method for the solution of linear and nonlinear fractional differential equations.

MSC:
35A15Variational methods (PDE)
26A33Fractional derivatives and integrals (real functions)
35A35Theoretical approximation to solutions of PDE
35A25Other special methods (PDE)
WorldCat.org
Full Text: DOI
References:
[1] Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. Fractal and fractional calculus in continuum mechanics, 291-348 (1997) · Zbl 0917.73004
[2] Podlubny, I.: Fractional differential equations. (1999) · Zbl 0924.34008
[3] R. Gorenflo, F. Mainardi, Fractional calculus: Int and differential equations of fractional order, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus, New York, 1997
[4] A.Y. Luchko, R. Groreflo, The initial value problem for some fractional differential equations with the Caputo derivative, Preprint series A08--98, fachbreich mathematik und informatik, Freic Universitat Berlin, 1998
[5] Shawagfeh, N. T.: Analytical approximate solutions for linear differential equations. Appl. math. Comput. 131, No. 2--3, 517-529 (2002) · Zbl 1029.34003
[6] Momani, S.: Analytic approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method. Appl. math. Comput. 165, 459-472 (2005) · Zbl 1070.65105
[7] He, J. H.: A new approach to linear partial differential equations. Commun. nonlinear sci. Numer. simul. 2, No. 4, 230-235 (1997)
[8] He, J. H.: Some applications of nonlinear fractional differential equations and their approximations. Bull. sci. Technol. 15, No. 12, 86-90 (1999)
[9] He, J. H.: Approximate solution of non linear differential equation with convolution product nonlinearities. Comput. methods appl. Mech. engrg. 167, 69-73 (1998) · Zbl 0932.65143
[10] He, J. H.: Variational iteration method -a kind of non-linear analytic technique: some examples. Int. J. Nonlinear mech. 34, 699-708 (1999) · Zbl 05137891
[11] He, J. H.: Variational iteration method for autonomous ordinary differential systems. Appl. mech. Comput. 114, 115-123 (2000) · Zbl 1027.34009
[12] He, J. H.; Wan, Ye.Q.; Guo, Q.: An iteration formulation for normalized diode characteristics. Int. J. Circuit theor. Appl. 32, No. 6, 629-632 (2000) · Zbl 1169.94352
[13] He, J. H.: Variational iteration method for autonomous ordinary differential systems. Appl. math. Comput. 114, 115-123 (2000) · Zbl 1027.34009
[14] He, J. H.: Variational iteration method for delay differential equations. Commun. nonlinear sci. Numer. simul. 2, No. 4, 235-236 (1997) · Zbl 0924.34063
[15] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. methods appl. Mech. eng. 167, 57-68 (1998) · Zbl 0942.76077
[16] Draganescu, G. E.: Application of a variational iteration method to linear and nonlinear viscoelastic models with fractional derivatives. J. math. Phys. 47, No. 8 (2006)
[17] Odibat, Z.; Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear sci. Numer. simul. 1, No. 7, 15-27 (2006) · Zbl 05675858
[18] Momani, S.; Odibat, Z.: Analytic approach to linear fractional partial differential equations arising in fluid mechanics. Phys. lett. A 355, 271-279 (2006) · Zbl 05675858
[19] Momani, S.; Abuasad, S.: Application of he’s variational iteration meathod to helmhotz equation. Chaos solitons fractals 27, No. 5, 1119-1123 (2006) · Zbl 1086.65113
[20] Momani, S.; Odibat, Z.: Numerical comparison of methods for solving linear differential equations of fractional order. Chaos solitons fractals 31, No. 5, 1248-1255 (2007) · Zbl 1137.65450
[21] Momani, S.; Odibat, Z.: Numerical approach to differential equations of fractional order. J. comput. Appl. math. 207, 96-110 (2007) · Zbl 1119.65127
[22] Z. Odibat, S. Momani, Numerical solution of Fokker--Planck equation with space- and time-fractional derivatives, Phys. Lett. A, doi:10.1016/j.physleta.2007.05.002 · Zbl 1209.65114
[23] S. Momani, Z. Odibat, A. Alawneh, Variational iteration method for solving the space-and time-fractional KdV equation, Numer. Math. Partial Diff. Eqn., doi:10.1002/num.20247 · Zbl 1130.65132
[24] Soliman, A. A.: A numeric simulation an explicit solutions of KdV-Burgers and Lax’s seveth-order KdV equations. Chaos solitons fractals 29, No. 2, 294-302 (2006) · Zbl 1099.35521
[25] B. Batiha, M.S.M. Noorani, I. Hashim, Application of variational iteration method to heat and wave-like equations. Phys. Lett. A, doi:10.1016/j.physleta.2007.04.069 · Zbl 1209.80040
[26] Batiha, B.; Noorani, M. S. M.; Hashim, I.; Ismail, E. S.: The multistage variational iteration method for class of nonlinear system of odes. Phys. scr. 76, 388-392 (2007) · Zbl 1132.34008
[27] N.H. Sweilam, et al. Numerical studies for a multi-order fractional differential equation, Phys. Lett. A., doi:10.1016/j.physleta.2007.06.016 · Zbl 1209.65116
[28] Bildik, J.; Ghazvini, H.: The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinearpartial differential equations. Int. J. Nonlinear sci. Numer. simul. 7, No. 1, 65-70 (2006)
[29] Biazar, N.; Konuralp, A.: He’s variational iteration method fot solving hyperbolic differential equations. Int. J. Nonlinear sci. Numer. simul. 8, No. 3, 311-314 (2007)
[30] Sadighi, A.; Ganji, D. D.: Solution of the generalized nonlinear boussinesqequation using homotopy perturbation and variational iteration methods. Int. J. Nonlinear sci. Numer. simul. 8, No. 3, 435-443 (2007) · Zbl 1120.65108
[31] Yusufoglu, E.: Variational iteration method for construction of some compact and noncompact structuresof klien-Gordon equations. Int. J. Nonlinear sci. Numer. simul. 8, No. 2, 153-158 (2007)
[32] Ghorbani, A.; Saberu--Nadjafi, J.: He’s homotopy perturbation method for calculating Adomian polynomials. Int. J. Nonlinear sci. Numer. simul. 8, No. 2, 229-232 (2007)
[33] Momani, S.; Odibat, Z.: Homotopy perturbation method for nonlinear pertial differential equations of fractional order. Phys. lett. A 365, No. 5--6, 345-350 (2007) · Zbl 1203.65212
[34] Momani, S.; Odibat, Z.: Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Comput. math. Appl. 54, No. 7--8, 910-918 (2007) · Zbl 1141.65398
[35] Odibat, Z.; Momani, S.: Modified homotopy perturbation method application to quadratic Riccati differential equation of fractional order. Chaos, solitons fractals 36, No. 1, 167-174 (2008) · Zbl 1152.34311
[36] Shou, D. H.; He, J. H.: Beyond Adomian methods: the variational iteration method for solving heat-like and wave-like equations with variable coefficients. Phys. lett. A 73, No. 1, 1-5 (2007) · Zbl 1217.35091
[37] Inokuti, M.; Sekine, H.; Mura, T.: General use of the Lagrange multiplier in nonlinear mathematical physics. Variational method in mechanics of solids, 156-162 (1978)
[38] A.M. Wazwaz, A study on linear and nonlinear Schrodinger equations by the variational iteration method, Chaos, Solitons and Fractals doi:10.1016/j.chaos.2006.10.009
[39] Y. Yu, H.X. Lib, The synchronization of fractional-order Rossler hyperchaotic systems, Physica A (2007), doi:10.1016/j.physa.2007.10.052
[40] Agrawal, O. P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear dynam. 29, 145-155 (2002) · Zbl 1009.65085
[41] Andrezei, H.: Multi-dimensional solutions of space-time-fractional diffusion equations. Proc. R. Soc. lond., ser. A, math. Phys. eng. Sci. 458, No. 2018, 429-450 (2002)
[42] Klafter, J.; Blumen, A.; Shlesinger, M. F.: Fractal behavior in trapping and reaction: A random walk study. J. stat. Phys. 36, 561-578 (1984) · Zbl 0587.60062
[43] Metzler, R.; Klafter, J.: Boundary value problems fractional diffusion equations. Physica A 278, 107-125 (2000) · Zbl 0984.82032
[44] Debnath, L.; Bhatta, D.: Solution to few linear inhomogenous partial differential equation in fluid mechanics. Fract. calc. Appl. anal. 7, No. 1, 21-36 (2004) · Zbl 1076.35096
[45] H. Xu, J. Cang, Analysis of a time fractional wave-like equation with the homotopy analysis method, Phys. Lett. A, doi:10.1016/j.physleta.2007.09.039 · Zbl 1217.35111