×

Sensitive dependence on initial conditions between dynamical systems and their induced hyperspace dynamical systems. (English) Zbl 1172.37006

If \((E,f)\) is a dynamical system, then the hyperspace dynamical system \((\widehat{E},\widehat{f})\) is defined by \(\widehat{f}(A):=f(A)\) on the collection \(\widehat{E}\) of all subsets of \(E\). The relation of different concepts of chaotic behaviour on \((E,f)\) and \((\widehat{E},\widehat{f})\) has been investigated in several papers. A map is said to depend sensitively on initial conditions (this property is briefly called sensitivity), if there is a \(\delta>0\) such that for any \(x\in E\) and any \(\varepsilon>0\) there is a \(y\in E\) with \(d(y,x)<\varepsilon\) and an \(n\in{\mathbb N}\) with \(d(f^{n}(y),f^{n}(x))\geq \delta\). In this paper the authors introduce the notion of collective sensitivity. This means that there is a \(\delta>0\) such that for finitely many \(x_{1},x_{2},\dots ,x_{k}\in E\) and any \(\varepsilon>0\) there are \(y_{1},y_{2},\dots , y_{k}\in E\) with \(d(y_{j},x_{j})<\varepsilon\) for all \(j\in\{1,2,\dots ,k\}\) and there is an \(n\in{\mathbb N}\) and a \(u\in\{1,2,\dots ,k\}\) such that \(d(f^{n}(y_{j}),f^{n}(x_{u}))\geq\delta\) for all \(j\in\{1,2,\dots ,k\}\) or \(d(f^{n}(x_{j}),f^{n}(y_{u}))\geq\delta\) for all \(j\in\{1,2,\dots ,k\}\).
It is proved that \((\widehat{E},\widehat{f})\) is sensitive if and only if \((E,f)\) is collectively sensitive. Here \(\widehat{E}\) is endowed with the hit-or-miss topology. Moreover, also the conditions \(({\mathcal C},\widehat{f})\) is sensitive and \(({\mathcal F},\widehat{f})\) is sensitive are equivalent to \((\widehat{E},\widehat{f})\) is sensitive, where \({\mathcal C}\) is the collection of all nonempty compact subsets of \(E\) and \({\mathcal F}\) is the collection of all nonempty finite subsets of \(E\), both endowed with the Hausdorff metric (which is equivalent to the Vietoris topology in this case). The authors also prove that weak mixing implies collective sensitivity.
Reviewer: Peter Raith (Wien)

MSC:

37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
54B20 Hyperspaces in general topology
54H20 Topological dynamics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Banks, J., Chaos for induced hyperspace maps, Chaos Solitons Fractals, 25, 681-685 (2005) · Zbl 1071.37012
[2] Banks, J.; Brooks, J.; Cairns, G.; Davis, G.; Stacey, P., On Devaney’s definition of chaos, Amer. Math. Monthly, 99, 332-334 (1992) · Zbl 0758.58019
[3] Banks, J., Regular periodic decompositions for topologically transitive maps, Ergodic Theory Dynam. Systems, 17, 505-529 (1997) · Zbl 0921.54029
[4] Bauer, W.; Sigmund, K., Topological dynamics of transformations induced on the space of probability measures, Monatsh. Math., 79, 81-92 (1975) · Zbl 0314.54042
[5] Beer, G., Topologies on Closed and Closed Convex Sets, Math. Appl., vol. 268 (1993), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht · Zbl 0792.54008
[6] Beer, G., On the Fell topology, Set-Valued Anal., 1, 69-80 (1993) · Zbl 0810.54010
[7] Bès, J.; Peris, A., Hereditarily hypercyclic operators, J. Funct. Anal., 167, 94-112 (1999) · Zbl 0941.47002
[8] Block, L. S.; Coppel, W. A., Dynamics in One Dimension, Lecture Notes in Math., vol. 1513 (1992), Springer-Verlag: Springer-Verlag New York, Heidelberg, Berlin
[9] Bowen, R., Topological entropy and Axiom A, (Global Analysis. Global Analysis, Proc. Sympos. Pure Math., vol. 14 (1970), Amer. Math. Soc.), 23-42 · Zbl 0207.54402
[10] Bowen, R., Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 14, 401-414 (1971) · Zbl 0212.29201
[11] Devaney, R. L., Chaotic Dynamical System (1989), Addison-Wesley: Addison-Wesley New York, (or 1985)
[12] Engelking, R., General Topology (1977), PWN-Polish Scientific Publishers: PWN-Polish Scientific Publishers Warszawa, (or Heldermann, Berlin, 1989)
[13] Fedeli, A., On chaotic set-valued discrete dynamical systems, Chaos Solitons Fractals, 23, 1381-1384 (2005) · Zbl 1079.37021
[14] Fell, J. M.G., A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Math. Nachr., 26, 321-337 (1964) · Zbl 0195.42201
[15] Furstenberg, H., Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, Math. System Theory, 1, 1-49 (1967) · Zbl 0146.28502
[16] Glasner, E.; Weiss, B., Sensitive dependence on initial conditions, Nonlinearity, 6, 1067-1075 (1993) · Zbl 0790.58025
[17] Gu, R.; Guo, W., On mixing property in set-valued discrete systems, Chaos Solitons Fractals, 28, 747-754 (2006) · Zbl 1108.37004
[18] Illanes, A.; Nadler, S. B., Hyperspace: Fundamentals and Recent Advances (1999), Marcel Dekker: Marcel Dekker New York · Zbl 0933.54009
[19] Kwietniak, D.; Oprocha, P., Topological entropy and chaos for maps induced on hyperspaces, Chaos Solitons Fractals, 33, 76-86 (2007) · Zbl 1152.37306
[20] Lechicki, A.; Levi, S., Wijsman convergence in the hyperspace of a metric space, Bull. Univ. Mat. Ital., 7, 1-B, 439-452 (1987) · Zbl 0655.54007
[21] Liao, G.; Wang, L.; Zhang, Y., Transitivity, mixing and chaos for a class of set-valued mappings, Sci. China Ser. A, 49, 1, 1-8 (2006) · Zbl 1193.37023
[22] Liao, G.; Ma, X.; Wang, L., Individual chaos implies collective chaos for weakly mising discrete dynamical systems, Chaos Solitons Fractals, 32, 604-608 (2007) · Zbl 1139.37010
[25] Matheron, G., Random Sets and Integral Geometry (1975), J. Wiley: J. Wiley New York, pp. 1-35 · Zbl 0321.60009
[26] Michael, E., Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71, 152-182 (1951) · Zbl 0043.37902
[27] Nadler, S. B., Hyperspaces of Sets, Monogr. Textb. Pure Appl. Math., vol. 49 (1978), Marcel Dekker: Marcel Dekker New York · Zbl 0432.54007
[28] Nguyen, H. T.; Wang, Y.; Wei, G., On Choquet theorem for random upper semicontinuous functions, Internat. J. Approx. Reason., 46, 3-16 (2007) · Zbl 1151.54013
[29] Nogura, T.; Shakhmatov, D., When does the Fell topology on a hyperspace of closed sets coincide with meet of the upper Kuratowski and the lower Vietoris topology?, Topology Appl., 70, 213-243 (1996) · Zbl 0848.54007
[30] Peña, J. S.C.; López, G. S., Topological entropy for induced hyperspace maps, Chaos Solitons Fractals, 28, 979-982 (2006) · Zbl 1097.54036
[31] Peris, A., Set-valued discrete chaos, Chaos Solitons Fractals, 26, 19-23 (2005) · Zbl 1079.37024
[32] Robinson, C., Dynamical System: Stability, Symbolic Dynamics, and Chaos (1999), CRC Press: CRC Press Roca Raton, FL · Zbl 0914.58021
[33] Rockafellar, R. T.; Wets, R. J.-B., Variational systems, an introduction, (Dold, A.; Eckmann, B., Lecture Notes in Math., vol. 1091 (1984), Springer-Verlag), 1-54
[34] Rockafellar, R. T.; Wets, R. J.-B., Variational analysis, (Fundamental Principles of Mathematical Sciences. Fundamental Principles of Mathematical Sciences, Grundlehren Math. Wiss., vol. 317 (1998), Springer-Verlag: Springer-Verlag Berlin), 144-147
[35] Román-Flores, H., A note on transitivity in set-valued discrete systems, Chaos Solitons Fractals, 17, 99-104 (2003) · Zbl 1098.37008
[36] Román-Flores, H.; Chalco-Cano, Y., Robinson’s chaos in set-valued discrete systems, Chaos Solitons Fractals, 25, 33-42 (2005) · Zbl 1071.37013
[37] Silverman, S., On maps with dense orbits and the definition of chaos, Rocky Mountain J. Math., 22, 353-375 (1992) · Zbl 0758.58024
[38] Stoyan, D., Models and statistics, Internat. Statist. Rev., 66, 1, 1-27 (1998) · Zbl 0906.60006
[39] Vellekoop, M.; Berglund, R., On intervals, transitivity = chaos, Amer. Math. Monthly, 101, 353-355 (1994) · Zbl 0886.58033
[40] Viana, M., Dynamics: A probabilistic and geometric perspective, Doc. Math. Extra Volume ICM, I, 557-578 (1998) · Zbl 0911.58013
[41] Vietoris, L., Bereiche zweiter ordnuang, Monatshefte für Mathematik und Physik, 33, 49-62 (1923)
[42] Walters, P., An Introduction to Ergodic Theory, Grad. Texts in Math., vol. 79 (1982), Springer · Zbl 0475.28009
[43] Wang, Y.; Wei, G., Conditions ensuring that hyperspace dynamical systems contain subsystems topologically (semi-)conjugate to symbolic dynamical systems, Chaos Solitons Fractals, 36, 283-289 (2008) · Zbl 1135.54025
[44] Wang, Y.; Wei, G., Embedding of topological dynamical systems into symbolic dynamical systems: A necessary and sufficient condition, Rep. Math. Phys., 57, 457-461 (2006) · Zbl 1136.37008
[45] Wang, Y.; Wei, G., Characterizing mixing, weak mixing and transitivity of induced hyperspace dynamical systems, Topology Appl., 155, 56-68 (2007) · Zbl 1131.54024
[48] Watson, P. D., On the limits of sequences of sets, Quart. J. Math. (2), 4, 1-3 (1953) · Zbl 0050.39201
[50] Wei, G.; Wang, Y., On metrization of the hit-or-miss topology using Alexandroff compactification, Internat. J. Approx. Reason., 46, 47-64 (2007) · Zbl 1146.54004
[51] Wei, G.; Wang, Y., Formulating stochastic convergence of random closed sets on locally compact separable metrizable spaces using metrics of the hit-or-miss topology, Internat. J. Intell. Tech. Appl. Stat., 1, 33-57 (2008)
[52] Zhang, G.; Zeng, F.; Liu, X., Devaney’s chaotic on induced maps of hyperspace, Chaos Solitons Fractals, 27, 471-475 (2006) · Zbl 1083.54026
[53] Zhou, Z. L., Symbolic Dynamical Systems (1997), Shanghai Scientific and Technological Education Publishing House: Shanghai Scientific and Technological Education Publishing House Shanghai, (in Chinese)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.