A generalized mixed vector variational-like inequality problem. (English) Zbl 1172.49011

Summary: We introduce relaxed \(\eta\)-\(\alpha\)-\(P\)-monotone mapping, and by utilizing KKM technique and Nadler’s Lemma we establish some existence results for the generalized mixed vector variational-like inequality problem. Further, we give the concepts of \(\eta \)-complete semicontinuity and \(\eta \)-strong semicontinuity and prove the solvability for generalized mixed vector variational-like inequality problem without monotonicity assumption by applying Brouwer’s fixed point theorem. The results presented in this paper are extensions and improvements of some earlier and recent results in the literature.


49J40 Variational inequalities
47H10 Fixed-point theorems
47J20 Variational and other types of inequalities involving nonlinear operators (general)
49J45 Methods involving semicontinuity and convergence; relaxation
Full Text: DOI


[1] Giannessi, F., Theorems of alternative, quadratic programs and complementarity problems, (Cottle, R. W.; Giannessi, F.; Lions, J. L., Variational Inequalities and Complementarity Problems (1980), John Wiley and Sons: John Wiley and Sons New York), 151-186 · Zbl 0484.90081
[2] Brouwer, L., Zur invarianz des \(n\)-dimensional Gebietes, Math. Ann., 71, 305-313 (1912) · JFM 42.0418.01
[3] Chang, S. S.; Lee, B. S.; Chen, Y. Q., Variational inequalities for monotone operators in nonreflexive banach spaces, Appl. Math. Lett., 8, 29-34 (1995) · Zbl 0840.47052
[4] Chen, Y. Q., On the semimonotone operator theory and applications, J. Math. Anal. Appl., 231, 177-192 (1999)
[5] Chen, G. Y.; Yang, X. Q., The vector complementarity problem and its equivalences with the weak minimal element, J. Math. Anal. Appl., 153, 136-158 (1990) · Zbl 0712.90083
[6] Cottle, R. W.; Yao, J. C., Pseudomonotone complementarity problems in Hilbert spaces, J. Optim. Theory Appl., 78, 281-295 (1992) · Zbl 0795.90071
[7] Ding, X. P., Existence and algorithm of solutions for generalized mixed implicit quasivariational inequalities, Appl. Math. Comput., 113, 67-80 (2000) · Zbl 1020.49015
[8] Fan, K., Some properties of convex sets related to fixed-point theorems, Math. Ann., 266, 519-537 (1984) · Zbl 0515.47029
[9] Fan, K., A generalization of Tychonoff’s fixed-point theorem, Math. Ann., 142, 305-310 (1961) · Zbl 0093.36701
[10] Fang, Y. P.; Huang, N. J., Variational-like inequalities with generalized monotone mappings in Banach spaces, J. Optim. Theory Appl., 118, 2, 327-338 (2003) · Zbl 1041.49006
[11] Fang, Y. P.; Cho, Y. J.; Huang, N. J.; Kang, S. M., Generalized nonlinear quasi-variational-like inequalities for set-valued mappings in Banach spaces, Math. Inequal. Appl., 6, 331-337 (2003) · Zbl 1039.47042
[12] Goeleven, D.; Motreanu, D., Eigenvalue and dynamic problems for variational and hemivariational inequalities, Commun. Appl. Nonlinear Anal., 3, 1-21 (1996) · Zbl 0911.49009
[13] Huang, N. J.; Fang, Y. P., On vector variational inequalities in reflexive Banach spaces, J. Global Optim., 32, 495-505 (2005) · Zbl 1097.49009
[14] Lee, B. S.; Khan, M. F.; Salahuddin, Generalized vector variational-type inequalities, Comp. Math. Appl., 55, 1164-1169 (2008) · Zbl 1147.49009
[15] Nadler, J. S.B., Multi-valued contraction mappings, Pacific J. Math., 30, 475-488 (1969) · Zbl 0187.45002
[16] Verma, R. U., On monotone nonlinear variational inequality problems, Comment. Math. Univ. Carolin., 39, 91-98 (1998) · Zbl 0937.47060
[17] Verma, R. U., Nonlinear variational inequalities on convex subsets of Banach spaces, Appl. Math. Lett., 10, 25-27 (1997) · Zbl 0905.47055
[18] Yang, X. Q.; Chen, G. Y., A class of nonconvex functions and prevariational inequalities, J. Math. Anal. Appl., 169, 359-373 (1992) · Zbl 0779.90067
[19] Zeng, L. C.; Yao, J. C., Existence of solutions of generalized vector variational inequalities in reflexive Banach spaces, J. Global Optim., 36, 483-497 (2006) · Zbl 1115.49005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.