×

Convergence of the variable two-step BDF time discretisation of nonlinear evolution problems governed by a monotone potential operator. (English) Zbl 1172.65026

The paper is concerned with the initial value problem
\[ u^{\prime}+Au=f \quad \text{in }(0,T), \qquad u(0)=u_0, \]
where the nonlinear operator \(A:V \to V^{*}\) acting on a Gelfand triple \(V\subseteq H \subseteq V^{*}\) is supposed to be a monotone and coercive potential operator that fulfills a growth condition. On the variable time grid \(\mathbb{I}: 0=t_0 < t_1< \dots < t_N=T\) \((N \in \mathbb{N})\) with \(\tau_n=t_n-t_{n-1}\) \((n=1,2,\dots,N)\), \(r_n=\frac{\tau_{n}}{\tau_{n-1}}\) \((n=2,3,\dots,N)\), \(\tau_{\max}=\max_{n=1,2,\dots,N}\tau_{n}\), \(r_{\max}=\max(\max_{n=2,3,\dots,N}r_n,1)\) the two-step temporal semidiscretization for the computation of a time discrete solution \(u^{n}\approx u(t_n)\) with an initial implicit Euler step
\[ Du^{n}+Au^{n}=f^{n}, \quad n=1,2,\dots,N \]
is considered, where
\[ Du^{1}=\frac{1}{\tau_1}\left(u^{1}-u^{0}\right),\quad Du^{n}=\frac{1}{\tau_1}\left(\frac{1+2r_n}{1+r_n}u^{n}-(1+r_n)u^{n-1}+ \frac{r_n^2}{1+r_n}u^{n-2}\right). \]
It is proven that a piecewise linear prolongation of the discrete solution converges to the weak solution of the initial problem provided that the ratios of adjacent step sizes are close to 1 and do not vary too much.

MSC:

65J15 Numerical solutions to equations with nonlinear operators
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
34G20 Nonlinear differential equations in abstract spaces
35K90 Abstract parabolic equations
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs

Software:

RODAS
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akrivis, G., Crouzeix, M.: Linearly implicit methods for nonlinear parabolic equations. Math. Comput. 73(246), 613–635 (2004) · Zbl 1045.65079
[2] Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comput. 67(222), 457–477 (1998) · Zbl 0896.65066
[3] Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit-explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82(4), 521–541 (1999) · Zbl 0936.65118
[4] Akrivis, G., Makridakis, C., Nochetto, R.H.: A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Math. Comput. 75(254), 511–531 (2006) · Zbl 1101.65094
[5] Axelsson, O., Gololobov, S.V.: Stability and error estimates for the -method for strongly monotone and infinitely stiff evolution equations. Numer. Math. 89(1), 31–48 (2001) · Zbl 0994.65094
[6] Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff Int. Publ., Leyden (1976) · Zbl 0328.47035
[7] Becker, J.: A second order backward difference method with variable steps for a parabolic problem. BIT 38(4), 644–662 (1998) · Zbl 0923.65050
[8] Brayton, R.K., Conley, C.S.: Some results on the stability and instability of the backward differentiation methods with non-uniform time steps. In: Topics in Numerical Analysis, Proc. Roy. Irish Acad. Conf. University Coll., Dublin, 1972, pp. 13–33. Academic Press, London (1973)
[9] Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam (1973) · Zbl 0252.47055
[10] Brézis, H.: Analyse fonctionnelle: Théorie et applications. Dunod, Paris (1999)
[11] Byrne, G.D., Hindmarsh, A.C.: Stiff ODE solvers: a review of current and coming attractions. J. Comput. Phys. 70(1), 1–62 (1987) · Zbl 0614.65078
[12] Calvo, M., Grigorieff, R.D.: Time discretisation of parabolic problems with the variable 3-step BDF. BIT 42(4), 689–701 (2002) · Zbl 1014.65086
[13] Calvo, M.P., Palencia, C.: A class of explicit multistep exponential integrators for semilinear problems. Numer. Math. 102(3), 367–381 (2006) · Zbl 1087.65054
[14] Calvo, M., Grande, T., Grigorieff, R.D.: On the zero-stability of the variable order variable stepsize BDF-formulas. Numer. Math. 57(1), 39–50 (1990) · Zbl 0696.65077
[15] Calvo, M., Montijano, J.I., Rández, L.: A 0-stability of variable stepsize BDF methods. J. Comput. Appl. Math. 45(1–2), 29–39 (1993) · Zbl 0789.65064
[16] Calvo, M., Montijano, J.I., Rández, L.: On the change of step size in multistep codes. Numer. Algorithms 4(3), 283–304 (1993) · Zbl 0779.65055
[17] Crouzeix, M., Thomée, V.: On the discretization in time for semilinear parabolic equations with nonsmooth initial data. Math. Comput. 49(180), 359–377 (1987) · Zbl 0632.65097
[18] Emmrich, E.: Error of the two-step BDF for the incompressible Navier-Stokes problem. M2AN Math. Model. Numer. Anal. 38(5), 757–764 (2004) · Zbl 1076.76054
[19] Emmrich, E.: Stability and convergence of the two-step BDF for the incompressible Navier-Stokes problem. Int. J. Nonlinear Sci. Numer. Simul. 5(3), 199–210 (2004) · Zbl 1076.76054
[20] Emmrich, E.: Stability and error of the variable two-step BDF for semilinear parabolic problems. J. Appl. Math. Comput. 19(1–2), 33–55 (2005) · Zbl 1082.65086
[21] Emmrich, E.: Convergence of a time discretization for a class of non-Newtonian fluid flow. Commun. Math. Sci. 6(4), 827–843 (2008) · Zbl 1160.76034
[22] Emmrich, E.: Two-step BDF time discretisation of nonlinear evolution problems governed by monotone operators with strongly continuous perturbations. Comput. Methods Appl. Math. (to appear) · Zbl 1169.65046
[23] Emmrich, E.: Variable time-step -scheme for nonlinear evolution equations governed by a monotone operator (submitted) · Zbl 1177.65075
[24] Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin (1974) · Zbl 0289.47029
[25] García-Archilla, B.: Some practical experience with the time integration of dissipative equations. J. Comput. Phys. 122(1), 25–29 (1995) · Zbl 0854.65078
[26] García-Archilla, B., de Frutos, J.: Time integration of the non-linear Galerkin method. IMA J. Numer. Anal. 15(2), 221–244 (1995) · Zbl 0823.65091
[27] Girault, V., Raviart, P.-A.: Finite Element Approximation of the Navier-Stokes Equations. Lecture Notes in Mathematics, vol. 749. Springer, Berlin (1981) · Zbl 0441.65081
[28] González, C., Palencia, C.: Stability of Runge-Kutta methods for quasilinear parabolic problems. Math. Comput. 69(230), 609–628 (2000) · Zbl 0941.65098
[29] González, C., Ostermann, A., Palencia, C., Thalhammer, M.: Backward Euler discretization of fully nonlinear parabolic problems. Math. Comput. 71(237), 125–145 (2002) · Zbl 0991.65087
[30] Grigorieff, R.D.: Stability of multistep-methods on variable grids. Numer. Math. 42(3), 359–377 (1983) · Zbl 0554.65051
[31] Grigorieff, R.D.: Time discretization of semigroups by the variable two-step BDF method. In: Numerical Treatment of Differential Equations, Sel. Pap. 5th Int. Semin., NUMDIFF-5, Halle, 1989. Teubner-Texte Math., vol. 121, pp. 204–216 (1991)
[32] Grigorieff, R.D.: On the variable grid two-step BDF method for parabolic equations. Preprint 426, FB Mathem., TU Berlin (1995)
[33] Grigorieff, R.D., Paes-Leme, P.J.: On the zero-stability of the 3-step BDF-formula on nonuniform grids. BIT 24(1), 85–91 (1984) · Zbl 0554.65052
[34] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations, II: Stiff Problems. Springer, Berlin (1996) · Zbl 0859.65067
[35] Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations, I: Nonstiff Problems. Springer, Berlin (1993) · Zbl 0789.65048
[36] Hansen, E.: Runge-Kutta time discretizations of nonlinear dissipative evolution equations. Math. Comput. 75(254), 631–640 (2006) · Zbl 1098.65058
[37] Hansen, E.: Convergence of multistep time discretizations of nonlinear dissipative evolution equations. SIAM J. Numer. Anal. 44(1), 55–65 (2006) · Zbl 1118.65055
[38] Hansen, E.: Galerkin/Runge-Kutta discretizations of nonlinear parabolic equations. J. Comput. Appl. Math. 205(2), 882–890 (2007) · Zbl 1220.65123
[39] Hass, R., Kreth, H.: Stabilität und Konvergenz von Mehrschrittverfahren zur numerischen Lösung quasilinearer Anfangswertprobleme. Z. Angew. Math. Mech. 54, 353–358 (1974) · Zbl 0296.65040
[40] Hill, A.T., Süli, E.: Upper semicontinuity of attractors for linear multistep methods approximating sectorial evolution equations. Math. Comput. 64(211), 1097–1122 (1995) · Zbl 0830.65049
[41] Hill, A.T., Süli, E.: Approximation of the global attractor for the incompressible Navier-Stokes equations. IMA J. Numer. Anal. 20(4), 633–667 (2000) · Zbl 0982.76022
[42] Kreth, H.: Time-discretisations for nonlinear evolution equations. In: Numerical Treatment of Differential Equations in Applications, Proc. Meeting Math. Res. Center, Oberwolfach, 1977. Lect. Notes Math., vol. 679, pp. 57–63. Springer, Berlin (1978)
[43] Kreth, H.: Ein Zwei-Schritt-Differenzenverfahren zur Berechnung strömungsabhängiger Ausbreitungsvorgänge. Z. Angew. Math. Phys. 29, 12–22 (1978) · Zbl 0395.65030
[44] Le Roux, M.-N.: Méthodes multipas pour des équations paraboliques non linéaires. Numer. Math. 35, 143–162 (1980) · Zbl 0463.65067
[45] Le Roux, M.-N.: Variable step size multistep methods for parabolic problems. SIAM J. Numer. Anal. 19(4), 725–741 (1982) · Zbl 0483.65033
[46] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969)
[47] Lubich, C., Ostermann, A.: Runge-Kutta approximation of quasi-linear parabolic equations. Math. Comput. 64(210), 601–627 (1995) · Zbl 0832.65104
[48] Lubich, C., Ostermann, A.: Linearly implicit time discretization of non-linear parabolic equations. IMA J. Numer. Anal. 15(4), 555–583 (1995) · Zbl 0834.65092
[49] Lubich, C., Ostermann, A.: Runge-Kutta time discretization of reaction-diffusion and Navier-Stokes equations: Nonsmooth-data error estimates and applications to long-time behaviour. Appl. Numer. Math. 22(1–3), 279–292 (1996) · Zbl 0872.65090
[50] Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (1995) · Zbl 0816.35001
[51] Makridakis, C., Nochetto, R.H.: A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math. 104(4), 489–514 (2006) · Zbl 1104.65091
[52] Moore, P.K.: A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension. SIAM J. Numer. Anal. 31(1), 149–169 (1994) · Zbl 0798.65089
[53] Nochetto, R.H., Savaré, G.: Nonlinear evolution governed by accretive operators in Banach spaces: error control and applications. Math. Models Methods Appl. Sci. 16(3), 439–477 (2006) · Zbl 1098.65092
[54] Nochetto, R.H., Savaré, G., Verdi, C.: A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Commun. Pure Appl. Math. 53(5), 525–589 (2000) · Zbl 1021.65047
[55] Ostermann, A., Thalhammer, M.: Convergence of Runge-Kutta methods for nonlinear parabolic equations. Appl. Numer. Math. 42(1–3), 367–380 (2002) · Zbl 1004.65093
[56] Ostermann, A., Thalhammer, M., Kirlinger, G.: Stability of linear multistep methods and applications to nonlinear parabolic problems. Appl. Numer. Math. 48(3–4), 389–407 (2004) · Zbl 1041.65073
[57] Palencia, C., García-Archilla, B.: Stability of linear multistep methods for sectorial operators in Banach spaces. Appl. Numer. Math. 12(6), 503–520 (1993) · Zbl 0784.65055
[58] Roubíček, T.: Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel (2005) · Zbl 1087.35002
[59] Rulla, J.: Error analysis for implicit approximations to solutions to Cauchy problems. SIAM J. Numer. Anal. 33(1), 68–87 (1996) · Zbl 0855.65102
[60] Sell, G.R., You, Y.: Dynamics of Evolutionary Equations. Springer, New York (2002) · Zbl 1254.37002
[61] Slodička, M.: Smoothing effect and discretization in time to semilinear parabolic equations with nonsmooth data. Comment. Math. Univ. Carol. 32(4), 703–713 (1991) · Zbl 0755.65095
[62] Slodička, M.: Semigroup formulation of Rothe’s method: application to parabolic problems. Comment. Math. Univ. Carol. 33(2), 245–260 (1992) · Zbl 0756.65121
[63] Stuart, A.M., Humphries, A.R.: Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge (1996) · Zbl 0869.65043
[64] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1997) · Zbl 0871.35001
[65] Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006) · Zbl 1105.65102
[66] Zeidler, E.: Nonlinear Functional Analysis and its Applications, II/A: Linear Monotone Operators, II/B: Nonlinear Monotone Operators. Springer, New York (1990) · Zbl 0684.47029
[67] Zlámal, M.: Finite element methods for nonlinear parabolic equations. R.A.I.R.O. Anal. Numér. 11(1), 93–107 (1977) · Zbl 0385.65049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.