×

zbMATH — the first resource for mathematics

Involutive upgrades of Navier-Stokes solvers. (English) Zbl 1172.76044
Summary: We use ideas related to involutive completion of a system of partial differential equations to formulate computational problems of fluid mechanics. As for the solution of differential algebraic equations, the approach requires solution of extra equations for derivative consequences. The extra calculation cost is negligible whereas the discrete form becomes much simpler to handle. We show that in this way we can quite easily improve the performance of existing solvers. Another interest is the derivation of special solutions of the Navier-Stokes system under incompressibility constraint in cylindrical domains.

MSC:
76M99 Basic methods in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andrews G., Special functions, Encyclopedia of Mathematics and its Applications 71 (1999)
[2] Brezzi F., Revue Francaise d’Automatique et de recherche Op√©rationelle 2 pp 129– (1974)
[3] DOI: 10.1016/0021-9991(67)90037-X · Zbl 0149.44802 · doi:10.1016/0021-9991(67)90037-X
[4] DOI: 10.1007/3-540-10694-4_22 · doi:10.1007/3-540-10694-4_22
[5] Dudnikov P. I., Partial differential equations VIII, Encyclopaedia of Mathematical Sciences 65 pp 1– (1996) · doi:10.1007/978-3-642-48944-0_1
[6] DOI: 10.1007/BF01436561 · Zbl 0258.65108 · doi:10.1007/BF01436561
[7] DOI: 10.1006/jcph.1996.0082 · Zbl 0848.65086 · doi:10.1006/jcph.1996.0082
[8] Krupchyk K., LMS Journal of Computation and Mathematics 9 pp 287– (2006) · Zbl 1162.35360 · doi:10.1112/S1461157000001285
[9] DOI: 10.1016/j.jsc.2007.10.005 · Zbl 1158.35393 · doi:10.1016/j.jsc.2007.10.005
[10] DOI: 10.1007/s10208-004-0161-y · Zbl 1101.35061 · doi:10.1007/s10208-004-0161-y
[11] Ladyshenskaya O. A., The mathematical theory of viscous incompressible flow (1969)
[12] Mansfield E. L., Journal of the London Mathematical Society 54 pp 323– (1996) · Zbl 0865.35092 · doi:10.1112/jlms/54.2.323
[13] DOI: 10.1051/m2an:2005040 · Zbl 1078.35010 · doi:10.1051/m2an:2005040
[14] DOI: 10.1080/10618560701455855 · Zbl 1184.76833 · doi:10.1080/10618560701455855
[15] DOI: 10.1016/0021-9991(88)90002-2 · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[16] DOI: 10.1146/annurev.fl.14.010182.001315 · doi:10.1146/annurev.fl.14.010182.001315
[17] Pommaret J. F., Mathematics and its applications 14 pp 1– (1978) · Zbl 0395.58007
[18] Seiler W. M., Involution–the formal theory of differential equations and its applications in computer algebra (2009)
[19] DOI: 10.1090/S0002-9904-1969-12129-4 · Zbl 0185.33801 · doi:10.1090/S0002-9904-1969-12129-4
[20] Tarkhanov N. N., Mathematics and its Applications 340 pp 1– (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.