zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fractional order control strategies for power electronic buck converters. (English) Zbl 1172.94377
Summary: This paper presents several alternative methods for the control of power electronic buck converters applying fractional order control (FOC). For achieving this goal, the controller design will be carried out by two strategies. On the one hand, the design of a linear controller for the DC/DC buck converter will be considered. In that sense, the Bode’s ideal function will be used as reference system. On the other hand, the fractional calculus is proposed in order to determine the switching surface applying a fractional sliding mode control ($F_{R}$SMC) scheme to the control of such devices. In that sense, switching surfaces based on fractional order PID and PI structures are defined. An experimental prototype has been developed and the experimental and simulation results confirm the validity of the proposed control strategies.

94A12Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI