# zbMATH — the first resource for mathematics

On the zeta functions of prehomogeneous vector spaces for a pair of simple algebras. (English) Zbl 1173.11050
Let $$\mathcal D$$ be a non-split simple algebra of dimension $$m = 4$$ or $$9$$ over a number field $$k$$, and define a prehomogeneous vector space $$(G,V) = (\mathcal D^\times \times (\mathcal D^{op})^\times \times \mathrm{GL}(2), \mathcal D \otimes k^2)$$ with action $$(g_1, g_2, g)\cdot (a\otimes v) = g_1ag_2 \otimes gv$$, which is an inner $$k$$-form of $$(\mathrm{GL}(n) \times \mathrm{GL}(n) \times \mathrm{GL}(2), k^n \otimes k^n \otimes k^2)$$. Then, one may define the global zeta function (Shintani zeta function) $$Z(\Phi, s, \omega)$$ associated with the above $$(G,V)$$, where $$\Phi$$ is a Schwartz-Bruhat function on $$V_\mathbb A$$, $$s \in \mathbb C$$ and $$\omega$$ is an adelic character of $$G$$. The main result of this paper is the meromorphic continuation of $$Z(\Phi, s, \omega)$$ to the region $$\text{Re}(s) > 2m -2$$ with an only possible pole at $$s = 2m$$.
For the case $$m = 4$$, the author obtained a certain density theorem as an application in a later paper [ibid. 58, No. 2, 625–670 (2008; Zbl 1231.11111)].
There are preceding works for the split case and another non-split case by A. C. Kable, D. J. Wright and A. Yukie.

##### MSC:
 11M41 Other Dirichlet series and zeta functions 11S90 Prehomogeneous vector spaces
Full Text:
##### References:
  Bourbaki, N., Algèbre. Éléments de mathématique, (1958), Hermann  Datskovsky, B.; Wright, D. J., The adelic zeta function associated with the space of binary cubic forms II: local theory., J. Reine Angew. Math., 367, 27-75, (1986) · Zbl 0575.10016  Datskovsky, B.; Wright., D. J., Density of discriminants of cubic extensions, J. Reine Angew. Math., 386, 116-138, (1988) · Zbl 0632.12007  Davenport, H.; Heilbronn., H., On the density of discriminants of cubic fields. II, Proc. Royal Soc., A322, 405-420, (1971) · Zbl 0212.08101  Godement, R.; Jacquet, H.; Springer-Verlag, Zeta functions of simple algebras, Lecture Notes in Mathematics, 260, (1972), Berlin, Heidelberg, New York · Zbl 0244.12011  Kable, A. C.; Wright, D. J., Uniform distribution of the Steinitz invariants of quadratic and cubic extensions, Compos. Math., 142, 84-100, (2006) · Zbl 1113.11065  Kable, A. C.; Yukie, A., The mean value of the product of class numbers of paired quadratic fields, I, Tohoku Math. J., 54, 513-565, (2002) · Zbl 1020.11079  Mumford, D.; Press, Princeton University, Lectures on curves on an algebraic surface, Annales of Mathematical Studies, 59, (1966), Princeton, New Jersey · Zbl 0187.42701  Saito, H., On a classification of prehomogeneous vector spaces over local and global fields, Journal of Algebra, 187, 510-536, (1997) · Zbl 0874.14046  Saito, H., Convergence of the zeta functions of prehomogeneous vector spaces, Nagoya. Math. J., 170, 1-31, (2003) · Zbl 1045.11083  Sato, M.; Kimura, T., A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65, 1-155, (1977) · Zbl 0321.14030  Sato, M.; Shintani, T., On zeta functions associated with prehomogeneous vector spaces., Ann. of Math., 100, 131-170, (1974) · Zbl 0309.10014  Shintani, T., On Dirichlet series whose coefficients are class-numbers of integral binary cubic forms, J. Math. Soc. Japan, 24, 132-188, (1972) · Zbl 0227.10031  Taniguchi, T., Distributions of discriminants of cubic algebras  Taniguchi, T., A mean value theorem for the square of class number times regulator of quadratic extensions · Zbl 1231.11111  Weil, A., Basic number theory, (1974), Springer-Verlag, Berlin, Heidelberg, New York · Zbl 0823.11001  Wright, D. J., The adelic zeta function associated to the space of binary cubic forms part I: global theory, Math. Ann., 270, 503-534, (1985) · Zbl 0533.10020  Wright, D. J.; Yukie, A., Prehomogeneous vector spaces and field extensions, Invent. Math., 110, 283-314, (1992) · Zbl 0803.12004  Yukie, A., Lecture Note Series, 183, Shintani zeta functions, (1993), London Math. Soc. · Zbl 0801.11021  Yukie, A., On the shintani zeta function for the space of pairs of binary Hermitian forms, J. Number Theory, 92, 205-256, (2002) · Zbl 1020.11078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.