×

On weighted Iyengar type inequalities on time scales. (English) Zbl 1173.26325

Summary: We establish some new weighted Iyengar type integral inequalities using Steffensen’s inequality on time scales.

MSC:

26D15 Inequalities for sums, series and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mitrinovic, D. S.; Pecaric, J. E.; Fink, A. M., Inequalities Involving Functions and their Integrals and Derivatives (1991), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0744.26011
[2] Cerone, P.; Dragomir, S. S., On a weighted generalization of Iyengar type inequalities involving bounded first derivative, Math. Inequal. Appl., 3, 1, 35-44 (2000) · Zbl 0989.26018
[3] S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universit ät Würzburg, 1988; S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universit ät Würzburg, 1988 · Zbl 0695.34001
[4] Hilger, S., Analysis on the measure chains; a unified approach to continuous and discrete calculus, Results Math., 18, 18-56 (1990) · Zbl 0722.39001
[5] Bohner, M.; Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (2001), Birkhäuser: Birkhäuser Boston · Zbl 0978.39001
[6] Bohner, M.; Peterson, A., Advances in Dynamic Equations on Time Scales (2003), Birkhäuser: Birkhäuser Boston · Zbl 1025.34001
[7] U.M. Özkan, H. Yildirim, Steffensen’s integral inequality on time scales, J. Inequal. Appl. 2007, Article ID 46524, 10 pages; U.M. Özkan, H. Yildirim, Steffensen’s integral inequality on time scales, J. Inequal. Appl. 2007, Article ID 46524, 10 pages · Zbl 1133.26311
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.