An extension of Picard’s theorem for meromorphic functions of small hyper-order. (English) Zbl 1173.30017

Let \(a\in\widehat C\), let \(f\) be a meromorphic function, and denote \(f^{-1} (\{a\})=\{z\in\mathbb{C}:f(z)=a\}\), where \(\{\cdot\}\) denotes a multiset which takes into account multiplicities of its elements. The hyper-order of \(f\) is defined by \[ \zeta(f)=\limsup_{r\to\infty}\frac{\log\log T(r,f)}{\log r}, \] where \(T(r, f)\) is the Nevanlinna characteristic function. One says that the pre-image of \(a\) is forward invariant with respect to the function \(\tau\) if \(\tau(f^{-1} (\{a\}))\subset f^{-1} (\{a\})\). The author obtains a version of the second fundamental theorem of Nevanlinna. Let \(\omega(z)=cz^n+p_{n-1}z^{n-1}+\cdots+ p_0\) and \(\varphi(z)=cz^n+q_{n-1}z^{n-1}+\cdots+q_0\) be non-constant polynomials. Let \(q\geq 2\) and let \(a_1,\dots,a_q\) be distinct constants. If \(f\circ\omega \not\equiv f\circ\varphi\) and \(\zeta(f)<1/n^2\), then \[ m(r,f\circ\varphi)+ \sum^q_{k=1}m\left(r,\frac{1}{f\circ\varphi-a_k}\right)\leq 2T(r,f\circ\varphi)-N_\omega(r,f\circ\varphi)+o(T(r,f\circ \varphi)), \] where \[ N_\omega(r,f\circ \varphi)=2N(r,f\circ\omega-f\circ \varphi)+N\left(r,\frac{1}{f\circ\omega-f\circ \varphi}\right) \] and \(r\) lies outside of an exceptional set of logarithmic measure. As a corollary of this result it is shown that if \(n\in\mathbb{N}\) and three distinct values of a meromorphic function \(f\) with \(\zeta(f)<1/n^2\) have a forward invariant pre-image with respect to a fixed branch of the algebraic function \(\tau(z) =z+\alpha_{n-1}z^{1-1/n}+\cdots+\alpha_1z^{1/n}+\alpha_0\) with constant coefficients, then \(f\circ\tau\equiv f\). The author gives an example that shows that the growth condition \(\zeta(f)<1/n^2\) cannot be deleted in the above result.


30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory
Full Text: DOI arXiv


[1] Barnett, D.; Halburd, R. G.; Korhonen, R. J.; Morgan, W., Nevanlinna theory for the \(q\)-difference operator and meromorphic solutions of \(q\)-difference equations, Proc. Roy. Soc. Edinburgh Sect. A, 137, 3, 457-474 (2007) · Zbl 1137.30009
[2] Blumenthal, O., Principes de la théorie des fonctions entières d’ordre infini, Collection de monographies sur la théorie des fonctions (1910), Gauthier-Villars: Gauthier-Villars Paris · JFM 41.0462.01
[3] Borel, É., Sur les zéros des fonctions entières, Acta Math., 20, 357-396 (1897) · JFM 28.0360.01
[4] Cherry, W.; Ye, Z., Nevanlinna’s Theory of Value Distribution, Springer Monogr. Math. (2001), Springer-Verlag: Springer-Verlag Berlin, the second main theorem and its error terms
[5] Chiang, Y. M.; Feng, S. J., On the Nevanlinna characteristic of \(f(z + \eta)\) and difference equations in the complex plane, Ramanujan J., 16, 1, 105-129 (2008) · Zbl 1152.30024
[6] Gol’dberg, A. A.; Ostrovskiĭ, I. V., Raspredelenie Znachenii Meromorfnykh Funktsii (1970), Izdat. Nauka: Izdat. Nauka Moscow
[7] Gromak, V. I.; Laine, I.; Shimomura, S., Painlevé Differential Equations in the Complex Plane (2002), Walter de Gruyter: Walter de Gruyter Berlin · Zbl 1043.34100
[8] Halburd, R. G.; Korhonen, R. J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 314, 477-487 (2006) · Zbl 1085.30026
[9] Halburd, R. G.; Korhonen, R. J., Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 31, 463-478 (2006) · Zbl 1108.30022
[10] Halburd, R. G.; Korhonen, R. J., Finite-order meromorphic solutions and the discrete Painlevé equations, Proc. London Math. Soc., 94, 2, 443-474 (2007) · Zbl 1119.39014
[11] Halburd, R. G.; Korhonen, R. J.; Tohge, K., Holomorphic curves with shift-invariant hyperplane preimages, preprint · Zbl 1298.32012
[12] Hayman, W. K., Meromorphic Functions (1964), Clarendon Press: Clarendon Press Oxford · Zbl 0115.06203
[13] Hille, E., Ordinary Differential Equations in the Complex Domain (1976), Wiley-Interscience: Wiley-Interscience New York-London-Sydney · Zbl 0343.34007
[14] Jank, G.; Volkmann, L., Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen (1985), Birkhäuser-Verlag: Birkhäuser-Verlag Basel · Zbl 0682.30001
[15] Laine, I., Nevanlinna Theory and Complex Differential Equations (1993), Walter de Gruyter: Walter de Gruyter Berlin
[16] Nevanlinna, R., Zur Theorie der meromorphen Funktionen, Acta Math., 46, 1-99 (1925) · JFM 51.0254.05
[17] Picard, É., Sur une propiété des fonctions entières, C. R. Acad. Sci. Paris, 88, 1024-1027 (1879) · JFM 11.0267.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.