×

zbMATH — the first resource for mathematics

Nonlocal impulsive problems for nonlinear differential equations in Banach spaces. (English) Zbl 1173.34048
Summary: We study the existence and uniqueness of mild and classical solutions for a nonlinear impulsive differential equation with nonlocal conditions
\[ \begin{cases} u'(t)=Au(t)+f(t,u(t)),\quad 0\leq t\leq K,\;t\neq t_i,\\ u(0)+g(u)=u_0,\\ \Delta u(t_i)=I_i(u(t_i)),\quad i=1,2,\dots,p,\;0<t_1<t_2<\cdots < t_p<K.\end{cases} \]
by combining and extending some earlier work on equations with nonlocal conditions and equations with impulsive conditions. Here, \(A\) is the generator of a strongly continuous semigroup in a Banach space, \(g\) constitutes a nonlocal condition, and \(\Delta u(t^+_i)-u(t^-_i)\) constitutes an impulsive condition. New results are obtained.

MSC:
34K30 Functional-differential equations in abstract spaces
34K45 Functional-differential equations with impulses
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahmed, N.U., Optimal feedback control for impulsive systems on the space of finitely additive measures, Publ. math. debrecen, 70, 371-393, (2007) · Zbl 1164.34026
[2] Aizicovici, S.; Lee, Haewon, Nonlinear nonlocal Cauchy problems in Banach spaces, Appl. math. lett., 18, 401-407, (2005) · Zbl 1084.34002
[3] Byszewski, L., Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. math. anal. appl., 162, 494-505, (1991) · Zbl 0748.34040
[4] Byszewski, L., Existence, uniqueness and asymptotic stability of solutions of abstract nonlocal Cauchy problems, Dynam. systems appl., 5, 595-605, (1996) · Zbl 0869.47034
[5] Benchohra, M.; Henderson, J.; Ntouyas, S., ()
[6] Byszewski, L.; Lakshmikantham, V., Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Applicable anal., 40, 11-19, (1990) · Zbl 0694.34001
[7] Boucherif, A.; Precup, R., On the nonlocal initial value problem for first order differential equations, Fixed point theory, 4, 2, 205-212, (2003) · Zbl 1050.34001
[8] Ezzinbi, K.; Fu, X.; Hilal, K., Existence and regularity in the \(\alpha\)-norm for some neutral partial differential equations with nonlocal conditions, Nonlinear anal., 67, 5, 1613-1622, (2007) · Zbl 1119.35105
[9] Guo, D.; Liu, X., Extremal solutions of nonlinear impulsive integrodifferential equations in Banach spaces, J. math. anal. appl., 177, 538-552, (1993) · Zbl 0787.45008
[10] Henriquez, H.R.; Hernandez, E.; Akca, H., Global solutions for an abstract Cauchy problem with nonlocal conditions, Internat. J. math. manuscripts, 1, (2007)
[11] Jackson, D., Existence and uniqueness of solutions of a semilinear nonlocal parabolic equations, J. math. anal. appl., 172, 256-265, (1993) · Zbl 0814.35060
[12] Liu, J.H., Nonlinear impulsive evolution equations, Dynam. contin. discrete impuls. sys., 6, 77-85, (1999) · Zbl 0932.34067
[13] Liang, J.; van Casteren, J.; Xiao, T.J., Nonlocal Cauchy problems for semilinear evolution equations, Nonlinear anal., 50, 173-189, (2002) · Zbl 1009.34052
[14] Lin, Y.; Liu, J.H., Semilinear integrodifferential equations with nonlocal Cauchy problem, Nonlinear anal., 26, 1023-1033, (1996) · Zbl 0916.45014
[15] Liang, J.; Liu, J.H.; Xiao, T.J., Nonlocal Cauchy problems governed by compact operator families, Nonlinear anal., 57, 183-189, (2004) · Zbl 1083.34045
[16] Liang, J.; Xiao, T.J., Semilinear integrodifferential equations with nonlocal initial conditions, Comput. math. appl., 47, 863-875, (2004) · Zbl 1068.45014
[17] Liu, X.; Willms, A., Stability analysis and applications to large scale impulsive systems: A new approach, Canad. appl. math. quart., 3, 419-444, (1995) · Zbl 0849.34044
[18] Lunardi, A., Analytic semigroups and optimal regularity in parabolic problems, (1995), Birkhäuser Verlag Basel · Zbl 0816.35001
[19] N’Guérékata, Gaston M., Existence and uniqueness of an integral solution to some Cauchy problem with nonlocal conditions, (), 843-849 · Zbl 1147.35329
[20] Rogovchenko, Y., Impulsive evolution systems: main results and new trends, Dynam. contin. discrete impuls. sys., 3, 57-88, (1997) · Zbl 0879.34014
[21] Zavalishchin, A., Impulse dynamic systems and applications to mathematical economics, Dynam. systems appl., 3, 443-449, (1994) · Zbl 0805.34009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.