Hernández M., Eduardo; Henríquez, Hernán R.; McKibben, Mark A. Existence results for abstract impulsive second-order neutral functional differential equations. (English) Zbl 1173.34049 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 7, 2736-2751 (2009). The authors provide sufficient conditions for the existence of mild solutions for a class of second order semilinear impulsive neutral functional differential equations with infinite delay in a Banach space. The main results are obtained using the family of bounded linear cosine operators and the fixed point argument. An example is presented showing the applicability of the imposed conditions. Reviewer: Mouffak Benchohra (Sidi Bel Abbes) Cited in 42 Documents MSC: 34K30 Functional-differential equations in abstract spaces 34K40 Neutral functional-differential equations 34K45 Functional-differential equations with impulses Keywords:neutral equations; second-order differential equations; impulsive equations; cosine functions of operators PDF BibTeX XML Cite \textit{E. Hernández M.} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 7, 2736--2751 (2009; Zbl 1173.34049) Full Text: DOI Link References: [1] Hale, J. K.; Lunel, S. M., (Introduction to Functional-Differential Equations. Introduction to Functional-Differential Equations, Applied Mathematical Sciences, vol. 99 (1993), Springer-Verlag: Springer-Verlag New York) · Zbl 0787.34002 [2] Kolmanovskii, V.; Myshkis, A., Introduction to the Theory and Applications of Functional Differential Equations (1999), Kluwer Acad. Publ: Kluwer Acad. Publ Dordrecht · Zbl 0917.34001 [3] Lakshmikantham, V.; Wen, L.; Zhang, B., Theory of Differential Equations with Unbounded Delay (1994), Kluwer Acad. Publ: Kluwer Acad. Publ Dordrecht · Zbl 0823.34069 [4] Adimy, M.; Ezzinbi, K., A class of linear partial neutral functional-differential equations with nondense domain, J. Differential Equations, 147, 2, 285-332 (1998) · Zbl 0915.35109 [5] Hale, J. K., Partial neutral functional-differential equations, Rev. Roumaine Math. Pures Appl., 39, 4, 339-344 (1994) · Zbl 0817.35119 [6] Wu, J.; Xia, H., Self-sustained oscillations in a ring array of coupled lossless transmission lines, J. Differential Equations, 124, 1, 247-278 (1996) · Zbl 0840.34080 [7] Hernández, E.; Henríquez, H. R., Existence of periodic solutions of partial neutral functional-differential equations with unbounded delay, J. Math. Anal. Appl., 221, 2, 499-522 (1998) · Zbl 0926.35151 [8] Hernández, E.; Henríquez, H. R., Existence results for partial neutral functional-differential equations with unbounded delay, J. Math. Anal. Appl., 221, 2, 452-475 (1998) · Zbl 0915.35110 [9] Hernández, E., Existence results for partial neutral integro-differential equations with unbounded delay, J. Math.Anal. Appl., 292, 1, 194-210 (2004) · Zbl 1056.45012 [10] Baĭnov, D.; Simeonov, P., Impulsive differential equations: Periodic solutions and applications, (Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 66 (1993), Longman Scientific & Technical: Longman Scientific & Technical Harlow), copublished in the United States with John Wiley & Sons, Inc., New York · Zbl 0815.34001 [12] Liu, J., Nonlinear impulsive evolution equations, Dyn. Contin. Discrete Impuls. Syst., 6, 1, 77-85 (1999) · Zbl 0932.34067 [13] Rogovchenko, Y. V., Impulsive evolution systems: Main results and new trends, Dyn. Contin. Discrete Impuls. Syst., 3, 1, 57-88 (1997) · Zbl 0879.34014 [14] Rogovchenko, Y. V., Nonlinear impulse evolution systems and applications to population models, J. Math. Anal. Appl., 207, 2, 300-315 (1997) · Zbl 0876.34011 [15] Hernández, E.; Rabello, M.; Henríquez, H., Existence of solutions for impulsive partial neutral functional differential equations, J. Math. Anal. Appl., 331, 2, 1135-1158 (2007) · Zbl 1123.34062 [16] Hernández, E., Existence results for a partial second order functional differential equation with impulses, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 14, 2, 229-250 (2007) · Zbl 1127.34049 [17] Kisyński, J., On cosine operator functions and one parameter group of operators, Studia Math., 49, 93-105 (1972) · Zbl 0216.42104 [18] Travis, C. C.; Webb, G. F., Compactness, regularity, and uniform continuity properties of strongly continuous cosine families, Houston J. Math., 3, 4, 555-567 (1977) · Zbl 0386.47024 [19] Travis, C. C.; Webb, G. F., Cosine families and abstract nonlinear second order differential equations, Acta Math.Acad. Sci. Hungar., 32, 76-96 (1978) · Zbl 0388.34039 [20] Hino, Y.; Murakami, S.; Naito, T., (Functional-Differential Equations with Infinite Delay. Functional-Differential Equations with Infinite Delay, Lecture Notes in Mathematics, vol. 1473 (1991), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0732.34051 [21] Granas, A.; Dugundji, J., Fixed Point Theory (2003), Springer-Verlag: Springer-Verlag New York · Zbl 1025.47002 [22] Martin, R. H., Nonlinear Operators and Differential Equations in Banach Spaces (1987), Robert E. Krieger Publ. Co: Robert E. Krieger Publ. Co Florida [23] Hernández, E.; McKibben, M., Some comments on: Existence of solutions of abstract nonlinear second-order neutral functional integrodifferential equations, Comput. Math. Appl.. Comput. Math. Appl., Comput. Math. Appl., 50, 5-6, 655-669 (2005) · Zbl 1090.45006 [24] Arendt, W.; Batty, C. J.K.; Hieber, M.; Neubrander, F., Vector-valued Laplace Transforms and Cauchy Problems (2001), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0978.34001 [25] Fattorini, H. O., (Second Order Linear Differential Equations in Banach Spaces. Second Order Linear Differential Equations in Banach Spaces, North-Holland Mathematics Studies, vol. 108 (1985), North-Holland: North-Holland Amsterdam) · Zbl 0564.34063 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.