zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Properties of the third order trinomial differential equations with delay argument. (English) Zbl 1173.34348
Summary: We study properties of the third order trinomial delay differential equation $$y^{\prime \prime \prime }(t)+p(t)y{^{\prime}}(t)+g(t)y(\tau (t))=0$$ by transforming this equation to a binomial second/third order differential equation. Employing suitable comparison theorems we establish new results on the asymptotic behavior of solutions.

34K25Asymptotic theory of functional-differential equations
Full Text: DOI
[1] Erbe, L.: Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equation. Pacific J. Math. 64, 369-385 (1976) · Zbl 0339.34030
[2] Greguš, M.: Asymptotic properties of solutions of nonautonomous ordinary differential equations. (1981)
[3] Jones, G. D.: An asymptotic property of solutions y”’+$p(x)$y’+$q(x)$y=0. Pacific J. Math. 47, 135-138 (1973) · Zbl 0264.34040
[4] Lazer, A. C.: The behavior of solutions of the differential equation y”’+$p(x)$y’+$q(x)$y=0. Pacific J. Math. 17, 435-466 (1966) · Zbl 0143.31501
[5] Škerlík, A.: Integral criteria of oscillation for the third order linear differential equations. Math. slovaca 45, 403-412 (1995) · Zbl 0855.34038
[6] Chanturija, T. A.; Kiguradze, I. T.: Asymptotic properties of nonautonomous ordinary differential equations. (1990)
[7] Džurina, J.: Comparison theorems for functional differential equations. (2002)
[8] Džurina, J.: Comparison theorems for nonlinear ODE’s. Math. slovaca 42, 299-315 (1992) · Zbl 0760.34030
[9] Kusano, T.; Naito, M.: Comparison theorems for functional differential equations with deviating arguments. J. math. Soc. Japan 3, 509-532 (1981) · Zbl 0494.34049
[10] Kusano, T.; Naito, M.; Tanaka, K.: Oscillatory and asymptotic behavior of solutions of a class of linear ordinary differential equations. Proc. roy. Soc. edinburg 90, 25-40 (1981) · Zbl 0486.34021
[11] Tanaka, K.: Asymptotic analysis of odd order ordinary differential equations. Hiroshima math. J. 10, 391-408 (1980) · Zbl 0453.34033
[12] Bartušek, M.; Cecchi, M.; Došlá, Z.; Marini, M.: On nonoscillatory solutions of third order nonlinear differential equations. Dynam. systems appl. 9, 483-500 (2000)
[13] Cecchi, M.; Došlá, Z.; Marini, M.: On the third order differential equations with property A and B. J. math. Anal. appl. 231, 509-525 (1999) · Zbl 0926.34025
[14] Džurina, J.: Asymptotic properties of the third order delay differential equations. Nonlinear anal. 26, 33-39 (1996) · Zbl 0840.34076
[15] Parhi, N.; Padhi, S.: On asymptotic behaviour of delay differential equations of third order. Nonlinear anal. 34, 391-403 (1998) · Zbl 0935.34063
[16] Bellman, R.: Stability theory of differential equations. 13 (1953) · Zbl 0053.24705