zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential synchronization of neural networks with time-varying delays. (English) Zbl 1173.34349
Summary: We study the problem of exponential synchronization of a class of neural networks with time-varying delays. By utilizing the Lyapunov functional method and combining it with linear matrix inequality approach, we obtain the exponential synchronization of the derive-response structure of neural networks. Some sufficient conditions for the exponential synchronization of neural networks are given in terms of the feasible solution to the LMIs, which can be solved by various convex optimization algorithms. A numerical example is given to illustrate the proposed theory.

MSC:
34K25Asymptotic theory of functional-differential equations
92B20General theory of neural networks (mathematical biology)
34K20Stability theory of functional-differential equations
WorldCat.org
Full Text: DOI
References:
[1] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems. Phys. lett. 64, No. 8, 821-824 (1990) · Zbl 0938.37019
[2] Chen, G.; Dong, X.: From chaos to order-perspectives, methodologies and applications. (1998) · Zbl 0908.93005
[3] Chen, F. X.; Zhang, W. D.: LMI criteria for robust chaos synchronization of a class of chaotic systems. Nonlinear anal. (2006)
[4] Jiang, G. P.; Tang, K. S.; Chen, G.: A simple global synchronization criterion for couples chaotic systems. Chaos solitons fractals 15, 925-935 (2003) · Zbl 1065.70015
[5] Yu, H.; Liu, Y.: Chaotic synchronization based on stability criterion of linear systems. Phys. lett. A. 314, 292-298 (2003) · Zbl 1026.37024
[6] Liu, F.; Ren, Y.; Shen, X.; Qiu, Z.: A linear feedback synchronization theorem for a class of chaotic systems. Chaos solitons fractals 13, No. 4, 723-730 (2002) · Zbl 1032.34045
[7] Feki, M.: An adaptive chaos synchronization scheme applied to secure communication. Chaos solitons fractals 18, 141-148 (2003) · Zbl 1048.93508
[8] Arik, S.: Global asymptotic stability of a lager class of neural networks with constant time delays. Phys. lett. A 311, 504-511 (2003) · Zbl 1098.92501
[9] Joy, M.: On the global convergence of a class of functional differential equations with applications in neural networks theory. J. math. Anal. appl. 232, 61-81 (1999) · Zbl 0958.34057
[10] Gilli, M.: Strange attractors in delayed cellular neural networks. IEEE trans. Circuits syst. I. 40, No. 11, 849-853 (1993) · Zbl 0844.58056
[11] Lu, H. T.: Chaotic attractors in delayed neural networks. Phys. lett. A 298, 109-116 (2002) · Zbl 0995.92004
[12] He, G.; Cao, Z.; Zhu, P.; Ogura, H.: Controlling chaos in a chaotic neural network. Neural netw. 16, No. 8, 1195-1200 (2003)
[13] Yu, H.; Liu, Y.; Peng, J. J.: Control of chaotic neural networks based on contraction mappings. Chaos solitons fractals 22, No. 4, 787-792 (2004) · Zbl 1060.93537
[14] Chen, G.; Zhou, J.; Liu, Z.: Global synchronization of coupled delayed neural networks and application to chaotic CNN models. Internat J. Bifur. chaos 14, No. 7, 2229-2240 (2004) · Zbl 1077.37506
[15] Ch, Chao Jung; The-Luliao; Yan, Jun-Juh; Hwang, Chi-Chuan: Exponential synchronization of a class of neural networks with time-varying delays, syst. Man cybernetics-part B. Cybernetics. 36, No. 1, 209-215 (2006)
[16] Khalil, H. K.: Nonlinear systems. (1992) · Zbl 0969.34001
[17] Gu, K.; Kharitonov, V. L.; Chen, J.: Stability of time-delay systems. (2003) · Zbl 1039.34067