zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Traveling wavefronts for time-delayed reaction-diffusion equation. II: Nonlocal nonlinearity. (English) Zbl 1173.35072
The author in the second part of a series of study on the stability of traveling wavefronts of reaction-diffusion equations with time delays consider a nonlocal time-delayed reaction-diffusion equation. When the initial perturbation around the traveling wave decays exponentially as $x\rightarrow -\infty $ (but the initial perturbation can be arbitrarily large in other locations), they prove the asymptotic stability of all traveling waves for the reaction-diffusion equation, including even the slower waves whose speed are close to the critical speed. The approach used herein is the weighted energy method, but the weight function is more tricky to construct due to the property of the critical wavefront, and the difficulty arising from the nonlocal nonlinearity is also overcome. Finally, by using the Crank-Nicholson scheme, they present some numerical results to support their theoretical study. [For part I see ibid., 495--510 (2009; Zbl 1173.35071).]

MSC:
35K57Reaction-diffusion equations
34K20Stability theory of functional-differential equations
92D25Population dynamics (general)
35R10Partial functional-differential equations
35B35Stability of solutions of PDE
35K15Second order parabolic equations, initial value problems
WorldCat.org
Full Text: DOI
References:
[1] Al-Omari, J.; Gourley, S. A.: Monotone travelling fronts in an age-structured reaction -- diffusion model of a single species, J. math. Biol. 45, 294-312 (2002) · Zbl 1013.92032 · doi:10.1007/s002850200159
[2] Al-Omari, J.; Gourley, S. A.: Monotone wave-fronts in a structured population model with distributed maturation delay, IMA J. Appl. math. 70, 858-879 (2005) · Zbl 1086.92043 · doi:10.1093/imamat/hxh073
[3] Fang, J.; Wei, J.; Zhao, X. -Q.: Spatial dynamics of a nonlocal and time-delayed reaction -- diffusion system, J. differential equations 245, 2749-2770 (2008) · Zbl 1180.35536 · doi:10.1016/j.jde.2008.09.001
[4] Gourley, S. A.: Linear stability of travelling fronts in an age-structured reaction -- diffusion population model, Quart. J. Mech. appl. Math. 58, 257-268 (2005) · Zbl 1069.92018 · doi:10.1093/qjmamj/hbi012
[5] Gourley, S. A.; Kuang, Y.: Wavefronts and global stability in a time-delayed population model with stage structure, Proc. R. Soc. lond. Ser. A 459, 1563-1579 (2003) · Zbl 1047.92037 · doi:10.1098/rspa.2002.1094
[6] Gourley, S. A.; So, J. W. -H.; Wu, J.: Non-locality of reaction -- diffusion equations induced by delay: biological modeling and nonlinear dynamics, J. math. Sci. 124, 84-120 (2003) · Zbl 1128.35360 · doi:10.1023/B:JOTH.0000047249.39572.6d
[7] Gourley, S. A.; Wu, J.: Delayed nonlocal diffusive system in biological invasion and disease spread, Fields inst. Commun. 48, 137-200 (2006) · Zbl 1130.35127
[8] Gurney, W. S. C.; Blythe, S. P.; Nisbet, R. M.: Nicholson’s blowflies revisited, Nature 287, 17-21 (1980)
[9] Li, G.; Mei, M.; Wong, Y. S.: Nonlinear stability of travelling wavefronts in an age-structured reaction -- diffusion population model, Math. biosci. Eng. 5, 85-100 (2008) · Zbl 1148.35038 · doi:10.3934/mbe.2008.5.85
[10] Li, W. -T.; Ruan, S.; Wang, Z. -C.: On the diffusive Nicholson’s blowflies equation with nonlocal delays, J. nonlinear sci. 17, 505-525 (2007) · Zbl 1134.35064 · doi:10.1007/s00332-007-9003-9
[11] Li, W. -T.; Wang, Z. -C.; Wu, J.: Entire solutions in monostable reaction -- diffusion equations with delayed nonlinearity, J. differential equations 245, 102-129 (2008) · Zbl 1185.35314 · doi:10.1016/j.jde.2008.03.023
[12] Liang, D.; Wu, J.: Traveling waves and numerical approximations in a reaction -- diffusion equation with nonlocal delayed effect, J. nonlinear sci. 13, 289-310 (2003) · Zbl 1017.92024 · doi:10.1007/s00332-003-0524-6
[13] C.-K. Lin, M. Mei, On travelling wavefronts of the Nicholson’s blowflies equations with diffusion, submitted for publication
[14] Ma, S.; Zou, X.: Existence, uniqueness and stability of travelling waves in a discrete reaction -- diffusion monostable equation with delay, J. differential equations 217, 54-87 (2005) · Zbl 1085.34050 · doi:10.1016/j.jde.2005.05.004
[15] Martin, R. H.; Smith, H. L.: Abstract functional-differential equations and reaction -- diffusion systems, Trans. amer. Math. soc. 321, 1-44 (1990) · Zbl 0722.35046 · doi:10.2307/2001590
[16] Mei, M.; Lin, C. -K.; Lin, C. -T.; So, J. W. -H.: Traveling wavefronts for time-delayed reaction -- diffusion equation: (I) local nonlinearity, J. differential equations 247, No. 2, 495-510 (2009) · Zbl 1173.35071 · doi:10.1016/j.jde.2008.12.026
[17] Mei, M.; So, J. W. -H.: Stability of strong traveling waves for a nonlocal time-delayed reaction -- diffusion equation, Proc. roy. Soc. Edinburgh sect. A 138, 551-568 (2008) · Zbl 1148.35093 · doi:10.1017/S0308210506000333
[18] Mei, M.; So, J. W. -H.; Li, M. Y.; Shen, S. S. P.: Asymptotic stability of traveling waves for the Nicholson’s blowflies equation with diffusion, Proc. roy. Soc. Edinburgh sect. A 134, 579-594 (2004) · Zbl 1059.34019 · doi:10.1017/S0308210500003358
[19] , The dynamics of physiologically structured populations (1986) · Zbl 0614.92014
[20] Ou, C.; Wu, J.: Persistence of wavefronts in delayed non-local reaction -- diffusion equations, J. differential equations 235, 219-261 (2007) · Zbl 1117.35037 · doi:10.1016/j.jde.2006.12.010
[21] Schaaf, K. W.: Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, Trans. amer. Math. soc. 302, 587-615 (1987) · Zbl 0637.35082 · doi:10.2307/2000859
[22] Smith, H. L.; Zhao, X. -Q.: Global asymptotic stability of traveling waves in delayed reaction -- diffusion equations, SIAM J. Math. anal. 31, 514-534 (2000) · Zbl 0941.35125 · doi:10.1137/S0036141098346785
[23] So, J. W. -H.; Wu, J.; Zou, X.: A reaction -- diffusion model for a single species with age structure: (I) traveling wavefronts on unbounded domains, Proc. R. Soc. lond. Ser. A 457, 1841-1853 (2001) · Zbl 0999.92029 · doi:10.1098/rspa.2001.0789
[24] So, J. W. -H.; Wu, J.; Yang, Y.: Numerical Hopf bifurcation analysis on the diffusive Nicholson’s blowflies equation, Appl. math. Comput. 111, 53-69 (2000) · Zbl 1028.65138 · doi:10.1016/S0096-3003(99)00063-6
[25] So, J. W. -H.; Yang, Y.: Dirichlet problem for the diffusive Nicholson’s blowflies equation, J. differential equations 150, 317-348 (1998) · Zbl 0923.35195 · doi:10.1006/jdeq.1998.3489
[26] So, J. W. -H.; Zou, X.: Traveling waves for the diffusive Nicholson’s blowflies equation, Appl. math. Comput. 22, 385-392 (2001) · Zbl 1027.35051 · doi:10.1016/S0096-3003(00)00055-2
[27] Thieme, H. R.: Mathematics in population biology, (2003) · Zbl 1054.92042
[28] Thieme, H.; Zhao, X. -Q.: Asymptotic speeds of spread and traveling waves for integral equation and delayed reaction -- diffusion models, J. differential equations 195, 430-470 (2003) · Zbl 1045.45009 · doi:10.1016/S0022-0396(03)00175-X
[29] Volpert, A.; Volpert, Vi.; Volpert, Vl.: Traveling wave solutions of parabolic systems, Transl. math. Monogr. 140 (1994) · Zbl 1001.35060 · http://www.ams.org/online_bks/mmono140/
[30] D. Wei, J.-Y. Wu, M. Mei, Remark on critical speed of traveling wavefronts for Nicholson’s blowflies equation with diffusion, Acta Math. Sci., in press · Zbl 1240.35565
[31] Wu, J. -Y.; Wei, D.; Mei, M.: Analysis on critical speed of traveling waves, Appl. math. Lett. 20, 712-718 (2007) · Zbl 1113.35097 · doi:10.1016/j.aml.2006.08.006
[32] Wu, J. -H.: Theory and applications of partial functional-diffusion equations, Appl. math. Sci. 119 (1996) · Zbl 0870.35116
[33] Zhao, X. -Q.: Dynamical systems in population biology, CMS books math. 16 (2003)
[34] Yang, Y.; So, J. W. -H.: Dynamics for the diffusive Nicholson’s blowflies equation, Dynamical systems and differential equations, vol. II, 333-352 (1998)