zbMATH — the first resource for mathematics

Spectrum of the Laplacian in a narrow curved strip with combined Dirichlet and Neumann boundary conditions. (English) Zbl 1173.35618
Summary: We consider the Laplacian in a domain squeezed between two parallel curves in the plane, subject to Dirichlet boundary conditions on one of the curves and Neumann boundary conditions on the other. We derive two-term asymptotics for eigenvalues in the limit when the distance between the curves tends to zero. The asymptotics are uniform and local in the sense that the coefficients depend only on the extremal points where the ratio of the curvature radii of the Neumann boundary to the Dirichlet one is the biggest. We also show that the asymptotics can be obtained from a form of norm-resolvent convergence which takes into account the width-dependence of the domain of definition of the operators involved.

35P15 Estimates of eigenvalues in context of PDEs
49R50 Variational methods for eigenvalues of operators (MSC2000)
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
81Q15 Perturbation theories for operators and differential equations in quantum theory
Full Text: DOI EuDML
[1] D. Borisov and P. Freitas, Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin planar domains. Ann. Inst. H. Poincaré Anal. Non Linéaire (2008) doi: 10.1016/j.anihpc.2007.12.001. Zbl1168.35401 MR2504043 · Zbl 1168.35401
[2] G. Bouchitté, M.L. Mascarenhas and L. Trabucho, On the curvature and torsion effects in one dimensional waveguides. ESAIM: COCV 13 (2007) 793-808. Zbl1139.49043 MR2351404 · Zbl 1139.49043
[3] G. Carron, P. Exner and D. Krejčiřík, Topologically nontrivial quantum layers. J. Math. Phys. 45 (2004) 774-784. Zbl1070.58025 MR2029097 · Zbl 1070.58025
[4] E.B. Davies, Spectral theory and differential operators. Camb. Univ. Press, Cambridge (1995). Zbl0893.47004 MR1349825 · Zbl 0893.47004
[5] J. Dittrich and J. Kříž, Curved planar quantum wires with Dirichlet and Neumann boundary conditions. J. Phys. A 35 (2002) L269-L275. Zbl1045.81025 MR1910722 · Zbl 1045.81025
[6] P. Duclos and P. Exner, Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7 (1995) 73-102. Zbl0837.35037 MR1310767 · Zbl 0837.35037
[7] P. Duclos, P. Exner and D. Krejčiřík, Bound states in curved quantum layers. Commun. Math. Phys. 223 (2001) 13-28. Zbl0988.81034 MR1860757 · Zbl 0988.81034
[8] P. Exner and P. Šeba, Bound states in curved quantum waveguides. J. Math. Phys. 30 (1989) 2574-2580. Zbl0693.46066 MR1019002 · Zbl 0693.46066
[9] P. Freitas, Precise bounds and asymptotics for the first Dirichlet eigenvalue of triangles and rhombi. J. Funct. Anal. 251 (2007) 376-398. Zbl1137.35049 MR2353712 · Zbl 1137.35049
[10] P. Freitas and D. Krejčiřík, Instability results for the damped wave equation in unbounded domains. J. Diff. Eq. 211 (2005) 168-186. Zbl1075.35018 MR2121113 · Zbl 1075.35018
[11] P. Freitas and D. Krejčiřík, Waveguides with combined Dirichlet and Robin boundary conditions. Math. Phys. Anal. Geom. 9 (2006) 335-352. Zbl1151.35061 MR2329432 · Zbl 1151.35061
[12] P. Freitas and D. Krejčiřík, Location of the nodal set for thin curved tubes. Indiana Univ. Math. J. 57 (2008) 343-376. Zblpre05270599 MR2400260 · Zbl 1187.35142
[13] L. Friedlander and M. Solomyak, On the spectrum of the Dirichlet Laplacian in a narrow strip, I. Israel J. Math. (to appear). Zbl1173.35090 MR2506330 · Zbl 1173.35090
[14] L. Friedlander and M. Solomyak, On the spectrum of the Dirichlet Laplacian in a narrow strip, II. Amer. Math. Soc. (to appear). MR2506330 · Zbl 1170.35487
[15] J. Goldstone and R.L. Jaffe, Bound states in twisting tubes. Phys. Rev. B 45 (1992) 14100-14107.
[16] D. Grieser, Thin tubes in mathematical physics, global analysis and spectral geometry, in Analysis on Graphs and its Applications (Cambridge, 2007), Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc. (to appear). Zbl1158.58001 MR2459891 · Zbl 1158.58001
[17] E.R. Johnson, M. Levitin and L. Parnovski, Existence of eigenvalues of a linear operator pencil in a curved waveguide - localized shelf waves on a curved coast. SIAM J. Math. Anal. 37 (2006) 1465-1481. Zbl1141.76014 MR2215273 · Zbl 1141.76014
[18] L. Karp and M. Pinsky, First-order asymptotics of the principal eigenvalue of tubular neighborhoods, in Geometry of random motion (Ithaca, N.Y., 1987), Contemp. Math. 73, Amer. Math. Soc., Providence, RI (1988) 105-119. Zbl0659.58050 MR954634 · Zbl 0659.58050
[19] D. Krejčiřík, Quantum strips on surfaces. J. Geom. Phys. 45 (2003) 203-217. Zbl1016.58015 MR1949351 · Zbl 1016.58015
[20] D. Krejčiřík, Hardy inequalities in strips on ruled surfaces. J. Inequal. Appl. 2006 (2006) 46409. Zbl1114.58027 MR2221231 · Zbl 1114.58027
[21] D. Krejčiřík and J. Kříž, On the spectrum of curved quantum waveguides. Publ. RIMS, Kyoto University 41 (2005) 757-791. Zbl1113.35143 · Zbl 1113.35143
[22] Ch. Lin and Z. Lu, Existence of bound states for layers built over hypersurfaces in \(\mathbb{R}^{n+1}\). J. Funct. Anal. 244 (2007) 1-25. Zbl1111.81059 MR2294473 · Zbl 1111.81059
[23] Ch. Lin and Z. Lu, Quantum layers over surfaces ruled outside a compact set. J. Math. Phys. 48 (2007) 053522. Zbl1144.81376 MR2329884 · Zbl 1144.81376
[24] O. Olendski and L. Mikhailovska, Localized-mode evolution in a curved planar waveguide with combined Dirichlet and Neumann boundary conditions. Phys. Rev. E 67 (2003) 056625. MR1996265
[25] M. Reed and B. Simon, Methods of modern mathematical physics, I. Functional analysis. Academic Press, New York (1972). Zbl0242.46001 MR493419 · Zbl 0242.46001
[26] M. Schatzman, On the eigenvalues of the Laplace operator on a thin set with Neumann boundary conditions. Appl. Anal. 61 (1996) 293-306. Zbl0865.35098 MR1618236 · Zbl 0865.35098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.