×

Thébault’s theorem. (English) Zbl 1173.51005

Thébault’s Theorem states that the centers of two circles tangent to the circumcircle, a Cevian \(AT\) and the side \(BC\) of a triangle \(ABC\) span a line which contains the incenter of \(ABC\). Note that a rigorous formulation needs to take into account the existence of four circles tangent to a given circle and two lines. Thébault’s result only holds for two of them. The theorem has been published as a problem in [V. Thébault, Am. Math. Mon. 45, 482–483 (1938)]. Several proofs of different flavor are known.
The authors present an analytic proof which is based on a characterization of circles tangent to the side of a triangle and its circumcircle. They derive an elementary construction of Thébault’s circles and discuss several straightforward consequences. Finally, the authors ask for a spatial generalization of Thébault’s Theorem. Two obvious ideas are falsified so that the question remains open.

MSC:

51M04 Elementary problems in Euclidean geometries
51N20 Euclidean analytic geometry
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Demir, H.; Tezer, C.: Reflections on a problem of V. Thébault. Geom. Dedicata 39 (1991), 79-92. · Zbl 0727.51006
[2] English, B.J.: Solution of Problem 3887. It’s a long story. Amer. Math. Monthly 110 (2003), 156-158.
[3] Fukagawa, H.: Problem 1260. Crux Math. 13 (1987), 181.
[4] Editor’s comment. Crux Math. 14 (1988), 237-240.
[5] Gueron, S.: Two applications of the generalized Ptolemy theorem. Amer. Math. Monthly 109 (2002), 362-370. · Zbl 1031.51011
[6] Pompe, W.: Solution of Problem 8. Crux Math. 21 (1995), 86-87.
[7] Rigby, J.F.: Tritangent circles, Pascal’s theorem and Thébault’s problem. J. Geom. 54 (1995), 134-147. · Zbl 0844.51011
[8] Roman, N.: Aspura unor problema data la O. I. M. Gazeta Mat. ( Bucuresti ) 105 (2000), 99-102.
[9] Seimiya, T.: Solution of Problem 1260. Crux Math. 17 (1991), 48.
[10] Shail, R.: A proof of Thébault’s theorem. Amer. Math. Monthly 108 (2001), 319-325. · Zbl 0985.51014
[11] Shirali, S.: On the generalized Ptolemy theorem. Crux Math. 22 (1996), 49-53.
[12] Stärk, R.: Eine weitere L ösung der Thébault’schen Aufgabe. Elem. Math. 44 (1989), 130-133. · Zbl 0704.51013
[13] Taylor, K.B.: Solution of Problem 3887. Amer. Math. Monthly 90 (1983), 487.
[14] Thébault, V.: Problem 3887. Three circles with collinear centers. Amer. Math. Monthly 45 (1938), 482-483.
[15] Turnwald, G.: Über eine Vermutung von Thébault. Elem. Math. 41 (1986), 11-13. · Zbl 0583.51016
[16] Veldkamp, G.R.: Een vraagstuk van Thébault uit 1938. Nieuw Tijdskr. Wiskunde 61 (1973), 86-89.
[17] Veldkamp, G.R.: Comment. Crux Math. 15 (1989), 51-53.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.