Boutayeb, Salahaddine Heat kernel lower Gaussian estimates in the doubling setting without Poincaré inequality. (English) Zbl 1173.58010 Publ. Mat., Barc. 53, No. 2, 457-479 (2009). The author gives a a characterization of the lower Gaussian estimate in terms of certain Hölder inequalities in the settings of a manifold with doubling property satisfying a Gaussian upper estimate of the heat kernel. Reviewer: Dian K. Palagachev (Bari) Cited in 1 Document MSC: 58J35 Heat and other parabolic equation methods for PDEs on manifolds 47D07 Markov semigroups and applications to diffusion processes 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems Keywords:heat kernel; Hölder inequalities; Gaussian estimates PDF BibTeX XML Cite \textit{S. Boutayeb}, Publ. Mat., Barc. 53, No. 2, 457--479 (2009; Zbl 1173.58010) Full Text: DOI Euclid EuDML OpenURL References: [1] M. T. Barlow, Which values of the volume growth and escape time exponent are possible for a graph?, Rev. Mat. Iberoamericana 20(1) (2004), 1\Ndash31. · Zbl 1051.60071 [2] M. T. Barlow and R. F. Bass, Random walks on graphical Sierpinski carpets, in: “Random walks and discrete potential theory” (Cortona, 1997), Sympos. Math. XXXIX, Cambridge Univ. Press, Cambridge, 1999, pp. 26\Ndash55. · Zbl 0958.60045 [3] M. T. Barlow and R. F. Bass, Divergence form operators on fractal-like domains, J. Funct. Anal. 175(1) (2000), 214\Ndash247. · Zbl 0968.58022 [4] I. Benjamini, I. Chavel, and E. A. Feldman, Heat kernel lower bounds on Riemannian manifolds using the old ideas of Nash, Proc. London Math. Soc. (3) 72(1) (1996), 215\Ndash240. · Zbl 0853.58098 [5] T. Coulhon, Off-diagonal heat kernel lower bounds without Poincaré, J. London Math. Soc. (2) 68(3) (2003), 795\Ndash816. · Zbl 1083.58025 [6] T. Coulhon, Ultracontractivity and Nash type inequalities, J. Funct. Anal. 141(2) (1996), 510\Ndash539. · Zbl 0887.58009 [7] T. Coulhon and A. Grigor’yan, Random walks on graphs with regular volume growth, Geom. Funct. Anal. 8(4) (1998), 656\Ndash701. · Zbl 0918.60053 [8] A. Grigor’yan, The heat equation on noncompact Riemannian manifolds, (Russian), Mat. Sb. 182(1) (1991), 55\Ndash87; translation in: Math. USSR-Sb. 72(1) (1992), 47\Ndash77. · Zbl 0776.58035 [9] A. Grigor’yan, Heat kernel upper bounds on a complete non\guiocompact manifold, Rev. Mat. Iberoamericana 10(2) (1994), 395\Ndash452. · Zbl 0810.58040 [10] A. Grigor’yan, J. Hu, and K.-S. Lau, Heat kernels on metric measure spaces and an application to semilinear elliptic equations, Trans. Amer. Math. Soc. 355(5) (2003), 2065\Ndash2095 (electronic). · Zbl 1018.60075 [11] A. Grigor’yan and A. Telcs, Sub-Gaussian estimates of heat kernels on infinite graphs, Duke Math. J. 109(3) (2001), 451\Ndash510. · Zbl 1010.35016 [12] B. Hambly and T. Kumagai, Heat kernel estimates for symmetric random walks on a class of fractal graphs and stability under rough isometries, in: “Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2” , Proc. Sympos. Pure Math. 72 , Amer. Math. Soc., Providence, RI, 2004, pp. 233\Ndash259. · Zbl 1065.60041 [13] W. Hebisch and L. Saloff-Coste, On the relation between elliptic and parabolic Harnack inequalities, Ann. Inst. Fourier (Grenoble) 51(5) (2001), 1437\Ndash1481. · Zbl 0988.58007 [14] P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156(3-4) (1986), 153\Ndash201. · Zbl 0611.58045 [15] S. Martines, M. Sans, and M. D. Martines, Some inequalities for fractional integrals and derivatives, (Russian), Dokl. Akad. Nauk SSSR 315(5) (1990), 1049\Ndash1051; translation in: Soviet Math. Dokl. 42(3) (1991), 876\Ndash879. · Zbl 0754.47026 [16] E.-M. Ouhabaz, Heat kernels of multiplicative perturbations: Hölder estimates and Gaussian lower bounds, Indiana Univ. Math. J. 47(4) (1998), 1481\Ndash1495. · Zbl 0928.47029 [17] E.-M. Ouhabaz, “Analysis of heat equations on domains” , London Mathematical Society Monographs Series 31 , Princeton University Press, Princeton, NJ, 2005. · Zbl 1082.35003 [18] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices 2 (1992), 27\Ndash38. · Zbl 0769.58054 [19] L. Saloff-Coste, Parabolic Harnack inequality for divergence-form second-order differential operators, Potential theory and degenerate partial differential operators (Parma), Potential Anal. 4(4) (1995), 429\Ndash467. · Zbl 0840.31006 [20] L. Saloff-Coste, “Aspects of Sobolev-type inequalities” , London Mathematical Society Lecture Note Series 289 , Cambridge University Press, Cambridge, 2002. · Zbl 0991.35002 [21] E. M. Stein, “Topics in harmonic analysis related to the Littlewood\guioPaley theory”, Annals of Mathematics Studies 63 , Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. · Zbl 0193.10502 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.