zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes. (English) Zbl 1173.60023
A new class of generalized backward doubly stochastic differential equations driven by Teugels martingales associated with Levy process and the integral with respect to an adapted continuous increasinig process is investigated. The existence and uniqueness of solutions to these equations are considered. A probabilistic interpretation for solutions to a class of stochastic partial differential equations with a nonlinear Neumann boundary is given.

60H15Stochastic partial differential equations
60H10Stochastic ordinary differential equations
60H20Stochastic integral equations
60H05Stochastic integrals
34F05ODE with randomness
Full Text: DOI
[1] Bally, V.; Matoussi, A.: Weak solutions for spdes and backward doubly sdes, J. theoret. Probab. 14, 125-164 (2001) · Zbl 0982.60057
[2] Boufoussi, B.; Casteren, J. -V.; Mrhardy, N.: Generalized backward doubly stochastic differential equations and spdes with nonlinear Neumann boundary conditions, Bernoulli 13, 423-446 (2007) · Zbl 1135.60038 · doi:10.3150/07-BEJ5092
[3] Dellacheie, C.; Meyer, P. A.: Probabilites et potentiel, (1980)
[4] El Otmani, M.: Generalized BSDE driven by a Lévy process, J. appl. Math. stoch. Anal. 2006 (2006) · Zbl 1147.60319 · doi:10.1155/JAMSA/2006/85407
[5] G. Gong, An Introduction of Stochastic Differential Equations, 2nd ed., Peking University of China, Peking, 2000
[6] Kunita, H.: Stochastic flows and stochastic differential equations, (1990) · Zbl 0743.60052
[7] Menaldi, J.; Robin, M.: Reflected diffusion processes with jumps, Ann. probab. 13, 319-341 (1985) · Zbl 0565.60065 · doi:10.1214/aop/1176992994
[8] Nualart, D.; Schoutens, W.: Chaotic and predictable representation for Lévy processes, Stoch. process. Appl. 90, 109-122 (2000) · Zbl 1047.60088 · doi:10.1016/S0304-4149(00)00035-1
[9] Nualart, D.; Schoutens, W.: Backward stochastic differential equations and Feynman-Kac formula for Lévy processes, with applications in finance, Bernoulli 5, 761-776 (2001) · Zbl 0991.60045 · doi:10.2307/3318541
[10] Ouknine, Y.: Reflected BSDE with jumps, Stoch. stoch. Rep. 5, 111-125 (1998) · Zbl 0918.60046
[11] Pardoux, E.; Peng, S.: Adapted solution of a backward stochastic differential equation, Systems control lett. 14, 55-61 (1990) · Zbl 0692.93064 · doi:10.1016/0167-6911(90)90082-6
[12] Pardoux, E.; Peng, S.: Backward SDE and quasilinear parabolic pdes, Lecture notes in control and information science 176, 200-217 (1992) · Zbl 0766.60079
[13] Pardoux, E.; Peng, S.: Backward doubly stochastic differential equations and systems of quasilinear spdes, Probab. theory related fields 88, 209-227 (1994) · Zbl 0792.60050 · doi:10.1007/BF01192514
[14] Pardoux, E.; Zhang, S.: Generalized bsdes and nonlinear Neumann boundary value problems, Probab. theory related fields 110, 535-558 (1998) · Zbl 0909.60046 · doi:10.1007/s004400050158
[15] Peng, S.: Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stoch. stoch. Rep. 37, 61-74 (1991) · Zbl 0739.60060
[16] Y. Ren, A. Lin, L. Hu, Stochastic PDIEs and backward doubly stochastic differential equations driven by Lévy processes, J. Comput. Appl. Math., doi:10.1016/j.cam.2008.03.008 · Zbl 1154.60336
[17] Ren, Y.; Xia, N.: Generalized reflected bsdes and an obstacle problem for pdes with a nonlinear Neumann boundary condition, Stoch. anal. Appl. 24, 1013-1033 (2006) · Zbl 1122.60055 · doi:10.1080/07362990600870454
[18] Tang, S.; Li, X.: Necessary condition for optional control of stochastic system with random jumps, SIAM J. Control optim. 32, 1447-1475 (1994) · Zbl 0922.49021 · doi:10.1137/S0363012992233858