zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Noise suppresses exponential growth under regime switching. (English) Zbl 1173.60024
Authors’ abstract: Consider a given system under regime switching whose solution grows exponentially, and suppose that the system is subject to environmental noise in some regimes. Can the regime switching and the environmental noise work together to make the system change significantly? The answer is yes. In this paper, we will show that the regime switching and the environmental noise will make the original system whose solution grows exponentially become a new system whose solutions will grow at most polynomially. In other words, we reveal that the regime switching and the environmental noise will supress the exponential growth.

60H30Applications of stochastic analysis
60J65Brownian motion
Full Text: DOI
[1] Appleby, J. A. D.; Flynn, A.: Stabilisation of Volterra equations by noise, J. appl. Math. stoch. Anal. 2006 (2006) · Zbl 1111.60049 · doi:10.1155/JAMSA/2006/89729
[2] Appleby, J. A. D.; Mao, X.: Stochastic stabilisation of functional differential equations, Systems control lett. 54, No. 11, 1069-1081 (2005) · Zbl 1129.34330 · doi:10.1016/j.sysconle.2005.03.003
[3] Appleby, J. A. D.; Mao, X.; Rodkina, A.: On stochastic stabilisation of difference equations, Discrete contin. Dyn. syst. Ser. A 15, No. 3, 843-857 (2006) · Zbl 1115.39008 · doi:10.3934/dcds.2006.15.843
[4] Appleby, J.; Mao, X.; Rodkina, A.: Stabilisation and destabilisation of nonlinear differential equations by noise, IEEE trans. Automat. control 53, No. 3, 683-691 (2008)
[5] Arnold, L.: Random dynamical systems, (1998) · Zbl 0906.34001
[6] Arnold, L.; Crauel, H.; Wihstutz, V.: Stabilisation of linear systems by noise, SIAM J. Control optim. 21, 451-461 (1983) · Zbl 0514.93069 · doi:10.1137/0321027
[7] Bahar, A.; Mao, X.: Stochastic delay Lotka -- Volterra model, J. math. Anal. appl. 292, 364-380 (2004) · Zbl 1043.92034 · doi:10.1016/j.jmaa.2003.12.004
[8] Bellman, R.; Bentsman, J.; Meerkov, S.: Stability of fast periodic systems, IEEE trans. Automat. control 30, 289-291 (1985) · Zbl 0557.93055 · doi:10.1109/TAC.1985.1103936
[9] Caraballo, T.; Garrido-Atienza, M.; Real, J.: Stochastic stabilisation of differential systems with general decay rate, Systems control lett. 48, 397-406 (2003) · Zbl 1157.93537 · doi:10.1016/S0167-6911(02)00293-1
[10] Deng, F.; Luo, Q.; Mao, X.; Pang, S.: Noise suppresses or expresses exponential growth, Systems control lett. 57, 262-270 (2008) · Zbl 1157.93515 · doi:10.1016/j.sysconle.2007.09.002
[11] Hasminskii, R. Z.: Stochastic stability of differential equations, (1981)
[12] Jiang, D. Q.; Shi, N. Z.: A note on nonautonomous logistic equation with random perturbation, J. math. Anal. appl. 303, 977-986 (2005) · Zbl 1076.34062 · doi:10.1016/j.jmaa.2004.08.027
[13] Kushner, H. J.: On the stability of processes defined by stochastic difference -- differential equations, J. differential equations 4, 424-443 (1968) · Zbl 0169.11601 · doi:10.1016/0022-0396(68)90028-4
[14] Mao, X.: Stability of stochastic differential equations with respect to semimartingales, (1991) · Zbl 0724.60059
[15] Mao, X.: Exponential stability of stochastic differential equations, (1994) · Zbl 0806.60044
[16] Mao, X.: Stochastic stabilisation and destabilisation, Systems control lett. 23, 279-290 (1994) · Zbl 0820.93071
[17] Mao, X.: Stochastic differential equations and their applications, (2007) · Zbl 1138.60005
[18] Mao, X.; Marion, G.; Renshaw, E.: Environmental noise suppresses explosion in population dynamics, Stochastic process. Appl. 97, 95-110 (2002) · Zbl 1058.60046 · doi:10.1016/S0304-4149(01)00126-0
[19] Mao, X.; Yuan, C.: Stochastic differential equations with Markovian switching, (2006) · Zbl 1109.60043 · doi:10.1155/JAMSA/2006/59032
[20] Meerkov, S.: Condition of vibrational stabilizability for a class of non-linear systems, IEEE trans. Automat. control 27, 485-487 (1982) · Zbl 0491.93034 · doi:10.1109/TAC.1982.1102897
[21] Minkowski, H.: Diophantische approximationen, (1907) · Zbl 38.0220.15
[22] Pinsky, M. A.; Wihstutz, V.: Lyapunov exponents of nilponent itô systems, Stochastics 25, 43-57 (1988) · Zbl 0654.60043 · doi:10.1080/17442508808833531
[23] Scheutzow, M.: Stabilisation and destabilisation by noise in the plane, Stoch. anal. Appl. 11, No. 1, 97-113 (1993) · Zbl 0766.60072 · doi:10.1080/07362999308809304
[24] Zhabko, A. P.; Kharitonov, V. L.: Problem of vibrational stabilisation of linear systems, Automat. telemekh. 2, 31-34 (1980) · Zbl 0553.93047