zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Derivative recovery and a posteriori error estimate for extended finite elements. (English) Zbl 1173.74401
Summary: This paper is the first attempt at error estimation for extended finite elements. The goal of this work is to devise a simple and effective local a posteriori error estimate for partition of unity enriched finite element methods such as the extended finite element method (XFEM). In each element, the local estimator is the $L_{2}$ norm of the difference between the raw XFEM strain field and an enhanced strain field computed by extended moving least squares (XMLS) derivative recovery obtained from the raw nodal XFEM displacements. The XMLS construction is tailored to the nature of the solution. The technique is applied to linear elastic fracture mechanics, in which near-tip asymptotic functions are added to the MLS basis. The XMLS shape functions are constructed from weight functions following the diffraction criterion to represent the discontinuity. The result is a very smooth enhanced strain solution including the singularity at the crack tip. Results are shown for two- and three-dimensional linear elastic fracture mechanics problems in mode I and mixed mode. The effectivity index of the estimator is close to 1 and improves upon mesh refinement for the studied near-tip problem. It is also shown that for the linear elastic fracture mechanics problems treated, the proposed estimator outperforms one of the superconvergent patch recovery technique of Zienkiewicz and Zhu, which is only $C_{0}$. Parametric studies of the general performance of the estimator are also carried out.

MSC:
74S05Finite element methods in solid mechanics
74R10Brittle fracture
Software:
XFEM
WorldCat.org
Full Text: DOI
References:
[1] Ainsworth, M.; Craig, A. W.: A posteriori error estimators in the finite element method. Numer. math. 60, 429-463 (1992) · Zbl 0757.65109
[2] Ainsworth, M.; Oden, J. T.: A posteriori error estimation in finite element analysis. Comput. methods appl. Mech. engrg. 142, 1-88 (1997) · Zbl 0895.76040
[3] Ainsworth, M.; Oden, T.: A unified approach to a posteriori error estimation using element residual methods. Numer. math. 65, No. 1, 23-50 (1993) · Zbl 0797.65080
[4] Ainsworth, M.; Oden, J. Tinsley: A posteriori error estimation in finite element analysis. (2000) · Zbl 1008.65076
[5] Areias, P. M. A.; Belytschko, T.: A comment on the article ”a finite element method for simulation of strong and weak discontinuities in solid mechanics”. Comput. methods appl. Mech. engrg. 195, No. 9 -- 12, 1275-1276 (2006) · Zbl 05174641
[6] Babuška, I.; Rheinboldt, W. C.: Error estimates for adaptive finite element computations. SIAM J. Numer. anal. 15, No. 4, 736-754 (1978) · Zbl 0398.65069
[7] Babuška, I.; Melenk, I.: Partition of unity method. Int. J. Numer. methods engrg. 40, No. 4, 727-758 (1997) · Zbl 0949.65117
[8] Barlow, J.: Optimal stress locations in finite element models. Int. J. Numer. methods engrg., 243-251 (1976) · Zbl 0322.73049
[9] Béchet, E.; Minnebo, H.; Moës, N.; Burgardt, B.: Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int. J. Numer. methods engrg. (2005) · Zbl 1122.74499
[10] Belytschko, T.; Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. methods engrg. 45, 601-620 (1999) · Zbl 0943.74061
[11] Belytschko, T.; Krongauz, Y.; Fleming, M.; Organ, D.; Liu, W. K.: Smoothing and accelerated computations in the element-free Galerkin method. J. comput. Appl. math. 74, 111-126 (1996) · Zbl 0862.73058
[12] Belytschko, T.; Lu, Y. Y.; Gu, L.: Element-free Galerkin methods. Int. J. Numer. methods engrg. 37, 229-256 (1994) · Zbl 0796.73077
[13] Bordas, S.; Conley, J. G.; Moran, B.; Gray, J.; Nichols, E.: A simulation-based design paradigm for complex cast components. Engrg. comput. 23, No. 1, 25-37 (2007)
[14] Bordas, S.; Moran, B.: Enriched finite elements and level sets for damage tolerance assessment of complex structures. Engrg. fracture mech. 73, 1176-1201 (2006)
[15] S. Bordas, V.P. Nguyen, C. Dunant, H. Nguyen-Dang, A. Guidoum, An extended finite element library, Int. J. Numer. Methods Engrg., in press, doi:10.1002/nme.1966. · Zbl 1194.74367
[16] S. Bordas, A. Legay, Extended finite element short course, EPFL school of continuing education, Lausanne, Switzerland, December, 2005.
[17] S. Bordas, M. Duflot, P. Le, A simple error estimator for extended finite elements, Commun. Numer. Meth. Engrg., in press, doi:10.1002/cnm.1001. · Zbl 1156.65093
[18] S. Bordas, T. Tabczuk, G. Zi, Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment, Engrg. Fracture Mech., in press.
[19] Chessa, J.; Belytschko, T.: The extended finite element method for two-phase fluids. ASME J. Appl. mech. 70, No. 1, 10-17 (2003) · Zbl 1110.74391
[20] Chessa, J.; Smolinski, P.; Belytschko, T.: The extended finite element method (X-FEM) for solidification problems. Int. J. Numer. methods engrg. 53, 1957-1977 (2002) · Zbl 1003.80004
[21] M. Duflot, A study of the representation of cracks with level sets, Int. J. Numer. Methods Engrg., in press, doi:10.1002/nme.1915. · Zbl 1194.74516
[22] Duflot, M.; Nguyen-Dang, H.: A meshless method with enriched weight functions for fatigue crack growth. Int. J. Numer. methods engrg. 59, 1945-1961 (2004) · Zbl 1060.74664
[23] M. Duflot, S. Bordas, An extended global recovery procedure for a posteriori error estimation in extended finite element methods, Int. J. Numer. Methods Engrg., in press. · Zbl 1195.74171
[24] Dunant, C.; Bordas, S.; Nguyen, P.; Guidoum, A.; Nguyen-Dang, H.: Architecture trade-offs of including a mesher in an object-oriented extended finite element code. Eur. J. Comput. mech. 16, 237-258 (2007) · Zbl 1208.74146
[25] Fleming, M.; Chu, Y. A.; Moran, B.; Belytschko, T.: Enriched element free Galerkin methods for singular fields. Int. J. Numer. methods engrg. 40, 1483-1504 (1997)
[26] T.-P. Fries, T. Belytschko. The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns, Int. J. Numer. Methods Engrg. (in press). · Zbl 1129.74045
[27] Gravouil, A.; Moës, N.; Belytschko, T.: Non-planar 3d crack growth by the extended finite element and level sets. Part II: Level set update. Int. J. Numer. methods engrg. 53, 2569-2586 (2002) · Zbl 1169.74621
[28] Hansbo, A.; Hansbo, P.: A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. methods appl. Mech. engrg. 193, No. 33 -- 35, 3523-3540 (2004) · Zbl 1068.74076
[29] Laborde, P.; Pommier, J.; Renard, Y.; Salaun, M.: High order extended finite element method for cracked domains. Int. J. Numer. methods engrg. 190, No. 47, 6183-6200 (2004)
[30] Ladevèze, P.; Leguillon, D.: Error estimate procedure in the finite element method and applications. SIAM J. Numer. anal., 485-509 (1983) · Zbl 0582.65078
[31] Lancaster, P.; Salkauskas, K.: Surfaces generated by moving least squares methods. Math. comput. 37, 141-158 (1981) · Zbl 0469.41005
[32] Legay, A.; Chessa, J.; Belytschko, T.: An Eulerian -- Lagrangian method for fluid -- structure interaction based on level sets. Comput. methods appl. Mech. engrg. 195, No. 17 -- 18, 2070-2087 (2006) · Zbl 1119.74053
[33] Melenk, J. M.; Babuška, I.: The partition of unity finite element method: basic theory and applications. Comput. methods appl. Mech. engrg. 139, 289-314 (1996) · Zbl 0881.65099
[34] Moës, N.; Belytschko, T.: Extended finite element method for cohesive crack growth. Engrg. fracture mech. 69, 813-834 (2002)
[35] Moës, N.; Dolbow, J.; Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. methods engrg. 46, 131-150 (1999) · Zbl 0955.74066
[36] Moës, N.; Gravouil, A.; Belytschko, T.: Non-planar 3d crack growth by the extended finite element and level sets. Part I: Mechanical model. Int. J. Numer. methods engrg. 53, 2549-2568 (2002) · Zbl 1169.74621
[37] Organ, D.; Fleming, M.; Terry, T.; Belytschko, T.: Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput. mech. 18, 225-235 (1996) · Zbl 0864.73076
[38] Nguyen Vinh Phu, An object oriented approach to the x-fem with applications to fracture mechanics, Master’s thesis, EMMC, November, 2005.
[39] T. Rabczuk, S. Bordas, G. Zi, A three-dimensional meshfree method for continuous crack initiation, nucleation and propagation in statics and dynamics. Comput. Mech., in press, doi:10.1007/s00466-006-0122-1. · Zbl 1161.74054
[40] J.-F. Remacle, C. Geuzaine, Gmsh finite element grid generator, 1998. Available from: <www.geuz.org/gmsh>.
[41] R. Duddu, S. Bordas, D. Chopp, B. Moran, A combined extended finite element and level set method for biofilm growth. Int. J. Numer. Methods Engrg., in press. · Zbl 1195.74169
[42] F. Stazi, E. Budyn, J. Chessa, T. Belytschko. An extended finite element method with higher-order elements for curved cracks. Comput. Mech. · Zbl 1038.74651
[43] Strouboulis, T.; Babuška, I.; Copps, K.: The design and analysis of the generalized finite element method. Comput. methods appl. Mech. engrg. 181, 43-69 (2000) · Zbl 0983.65127
[44] Strouboulis, T.; Copps, K.; Babuška, I.: The generalized finite element method: an example of its implementation and illustration of its performance. Int. J. Numer. methods engrg. 47, No. 8, 1401-1417 (2000) · Zbl 0955.65080
[45] Strouboulis, T.; Zhang, L.; Wang, D.; Babuška, I.: A posteriori error estimation for generalized finite element methods. Comput. methods appl. Mech. engrg. 195, No. 9 -- 12, 852-879 (2006) · Zbl 1119.65111
[46] Sukumar, N.; Chopp, D. L.; Moran, B.: Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Engrg. fracture mech. 70, No. 1, 29-48 (2003)
[47] Sukumar, N.; Chopp, D. L.; Moës, N.; Belytschko, T.: Modeling holes and inclusions by level sets in the extended finite element method. Int. J. Numer. methods engrg. 190, No. 47, 6183-6200 (2001) · Zbl 1029.74049
[48] Sukumar, N.; Moës, N.; Belytschko, T.; Moran, B.: Extended finite element method for three-dimensional crack modelling. Int. J. Numer. methods engrg. 48, No. 11, 1549-1570 (2000) · Zbl 0963.74067
[49] Sukumar, N.; Moran, B.; Black, T.; Belytschko, T.: An element-free Galerkin method for three-dimensional fracture mechanics. Comput. mech. 20, 170-175 (1997) · Zbl 0888.73066
[50] Tabbara, M.; Blacker, T.; Belytschko, T.: Finite element derivative recovery by moving least square interpolants. Comput. methods appl. Mech. engrg. 117, 211-223 (1994) · Zbl 0848.73072
[51] Ventura, G.: On the elimination of quadrature subcells for discontinuous functions in the extended finite element method. Int. J. Numer. methods engrg. 66, No. 5, 761-795 (2006) · Zbl 1110.74858
[52] G. Ventura, J.X. Xu, T. Belytschko, Level set crack propagation modelling in the element-free galerkin method, in: European Conference on Computational Mechanics, June, 2001.
[53] Wagner, G. J.; Moës, N.; Liu, W. K.; Belytschko, T.: The extended finite element method for Stokes flow past rigid cylinders. Int. J. Numer. methods engrg. 51, 393-413 (2001) · Zbl 0998.76054
[54] Xiao, Q. Z.; Karihaloo, B. L.: Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery. Int. J. Numer. methods engrg. 66 (2006) · Zbl 1122.74529
[55] Zienkiewicz, O. C.; Zhu, J. Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. methods engrg. 24, 337-357 (1987) · Zbl 0602.73063
[56] Zienkiewicz, O. C.; Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int. J. Numer. methods engrg. 33, No. 77, 1331-1364 (1992) · Zbl 0769.73084
[57] Zienkiewicz, O. C.; Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Int. J. Numer. methods engrg. 33, No. 77, 1365-1382 (1992) · Zbl 0769.73085