×

Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: overview and progress report. (English) Zbl 1173.90590

Summary: Nowadays, a promising way to obtain hybrid metaheuristics concerns the combination of several search algorithms with strong specialization in intensification and/or diversification. The flexible architecture of evolutionary algorithms allows specialized models to be obtained with the aim of providing intensification and/or diversification. The outstanding role that is played by evolutionary algorithms at present justifies the choice of their specialist approaches as suitable ingredients to build hybrid metaheuristics.This paper focuses on hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification. We first give an overview of the existing research on this topic, describing several instances grouped into three categories that were identified after reviewing specialized literature. Then, with the aim of complementing the overview and providing additional results and insights on this line of research, we present an instance that consists of an iterated local search algorithm with an evolutionary perturbation technique. The benefits of the proposal in comparison to other iterated local search algorithms proposed in the literature to deal with binary optimization problems are experimentally shown. The good performance of the reviewed approaches and the suitable results shown by our instance allow an important conclusion to be achieved: the use of evolutionary algorithms specializing in intensification and diversification for building hybrid metaheuristics becomes a prospective line of research for obtaining effective search algorithms.

MSC:

90C59 Approximation methods and heuristics in mathematical programming

Software:

CMA-ES
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alba, E.; Tomassini, M., Parallelism and evolutionary algorithms, IEEE Trans Evol Comput, 6, 5, 443-462 (2002)
[2] Alba, E.; Luna, F.; Nebro, A.; Troya, J. M., Parallel heterogeneous genetic algorithms for continuous optimization, Parallel Comput, 30, 5-6, 699-719 (2004)
[3] Alba, E.; Dorronsoro, B., The exploration/exploitation tradeoff in dynamic cellular genetic algorithms, IEEE Trans Evol Comput, 9, 2, 126-142 (2005)
[4] Alba E, editor. Parallel metaheuristics: a new class of algorithms. New York: Wiley; 2005.; Alba E, editor. Parallel metaheuristics: a new class of algorithms. New York: Wiley; 2005. · Zbl 1094.90052
[5] Auger, A.; Hansen, N., Performance evaluation of an advanced local search evolutionary algorithm, (Proceedings of the 2005 IEEE congress on evolutionary computation (2005), IEEE Press: IEEE Press New York), 1777-1784
[6] Auger, A.; Hansen, N., A restart CMA evolution strategy with increasing population size, (Proceedings of the 2005 IEEE congress on evolutionary computation (2005), IEEE Press: IEEE Press New York), 1769-1776
[7] Bäck, T., Evolutionary algorithms in theory and practice (1996), Oxford University Press: Oxford University Press New York · Zbl 0877.68060
[8] Bäck, T.; Fogel, D. B.; Michalewicz, Z., Handbook of evolutionary computation (1997), Institute of Physics Publishers · Zbl 0883.68001
[9] Beyer, H.-G.; Schwefel, H.-P., Evolution strategies: a comprehensive introduction, Nat Comput, 1, 2-52 (2002) · Zbl 1014.68134
[10] Blum, C., ACO applied to group shop scheduling: a case study on intensification and diversification, (Dorigo, M.; Di Caro, G.; Sampels, M., Proceedings of the third international workshop ANTS. Lecture notes in computer science, vol. 2463 (2002), Springer: Springer Berlin, Heidelberg), 14-27
[11] Blum, C.; Roli, A., Metaheuristics in combinatorial optimization: overview and conceptual comparison, ACM Comput Surv, 35, 3, 268-308 (2003)
[12] Bonissone, P. P.; Subbu, R.; Eklund, N.; Kiehl, T. R., Evolutionary algorithms \(+\) domain knowledge = real-world evolutionary computation, IEEE Trans Evol Comput, 10, 3, 256-280 (2006)
[13] Chaiyaratana, N.; Piroonratana, T.; Sangkawelert, N., Effects of diversity control in single-objective and multi-objective genetic algorithms, J Heuristics, 13, 1, 1-34 (2007)
[14] Chelouah, R.; Siarry, P., Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions, Eur J Oper Res, 148, 335-348 (2003) · Zbl 1035.90062
[15] Chen, X.; Li, Y., A modified PSO structure resulting in high exploration ability with convergence guaranteed, IEEE Trans Syst Man Cybern B, 37, 5, 1271-1289 (2007)
[16] Cordeau, J.-F.; Laporte, G.; Pasin, F., An iterated local search heuristic for the logistics network design problem with single assignment, Int J Prod Econ, 113, 2, 626-640 (2008)
[17] Cordón, O.; Damas, S., Image registration with iterated local search, J Heuristics, 12, 1-2, 73-94 (2006) · Zbl 1122.90066
[18] Dorigo, M.; Stützle, T., Ant colony optimization (2004), The MIT Press: The MIT Press Cambridge, MA · Zbl 1092.90066
[19] Eiben, A. E.; Smith, J. E., Introduction to evolutionary computing (2003), Springer: Springer Berlin · Zbl 1028.68022
[20] El-Abd, M.; Kamel, M., A taxonomy of cooperative search algorithms, (Blesa, M. J.; Blum, C.; Roli, A.; Sampels, M., Hybrid metaheuristics. Lecture notes in computer science, vol. 3636 (2005), Springer: Springer Berlin, Heidelberg), 32-41
[21] Eshelman, L. J., The CHC adaptive search algorithm: how to have safe search when engaging in non-traditional genetic recombination, (Rawlins, G., Foundations of genetic algorithms, vol. 1 (1991), Morgan Kaufmann: Morgan Kaufmann California), 265-283
[22] Fernandes, C.; Rosa, A., A study on non-random mating and varying population size in genetic algorithms using a royal road function, (Proceedings of the 2001 congress on evolutionary computation (2001), IEEE Service Center: IEEE Service Center New Jersey), 60-66
[23] Fogel, D. B., Evolutionary computation: toward a new philosophy of machine intelligence (1995), IEEE Press: IEEE Press New York
[24] Forrest, S.; Mitchell, M., Relative building block fitness and the building block hypothesis, (Whitley, L. D., Foundations of genetic algorithms, vol. 2 (1993), Morgan Kaufmann: Morgan Kaufmann California), 109-126
[25] Gang, P.; Iimura, I.; Nakayama, S., Application of genetic recombination to genetic local search in TSP, Int J Inf Technol, 13, 1, 57-66 (2007)
[26] García-Martínez, C.; Lozano, M.; Herrera, F.; Molina, D.; Sánchez, A. M., Global and local real-coded genetic algorithms based on parent-centric crossover operators, Eur J Oper Res, 185, 1088-1113 (2008) · Zbl 1146.90532
[27] García-Martínez, C.; Lozano, M., Local search based on genetic algorithms, (Siarry, P.; Michalewicz, Z., Advances in metaheuristics for hard optimization (2008), Springer: Springer Berlin), 199-221 · Zbl 1211.90304
[28] Glover F, Kochenberger G, editors. Handbook of metaheuristics. Massachusetts: Kluwer Academic Publishers, 2003.; Glover F, Kochenberger G, editors. Handbook of metaheuristics. Massachusetts: Kluwer Academic Publishers, 2003. · Zbl 1058.90002
[29] Goldberg, D. E., Genetic algorithms in search, optimization, and machine learning (1989), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0721.68056
[30] Goldberg, D. E.; Korb, B.; Deb, K., Messy genetic algorithms: motivation, analysis, and first results, Complex Syst, 3, 493-530 (1989) · Zbl 0727.68097
[31] Goldberg, D. E.; Deb, K.; Horn, J., Massively multimodality, deception, and genetic algorithms, (Männer, R.; Manderick, B., Proceedings of the international conference on parallel problem solving from nature (1992), North-Holland Pub. Co: North-Holland Pub. Co Amsterdam), 37-46
[32] Goldberg, D. E.; Wang, L., Adaptive niching via coevolutionary sharing, (Quagliarella, D.; Periaux, J.; Poloni, C.; Winter, G., Genetic algorithms in engineering and computer science (1997), Wiley: Wiley New York), 21-38
[33] Grosan, C.; Abraham, A., Hybrid evolutionary algorithms: methodologies, architectures, and reviews, (Grosan, C.; Abraham, A.; Ishibuchi, H., Hybrid evolutionary algorithms (2007), Springer: Springer Berlin, Heidelberg), 1-17 · Zbl 1124.68091
[34] Hansen, P.; Mladenović, N., Variable neighborhood search, (Glover, F.; Kochenberber, G. A., Handbook of metaheuristics (2003), Kluwer Academic Publishers: Kluwer Academic Publishers Massachusetts), 145-184 · Zbl 1102.90371
[35] Hansen, N.; Müller, S. D.; Koumoutsakos, P., Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES), Evol Comput, 11, 1, 1-18 (2003)
[36] Hansen, N.; Ostermeier, A., Completely derandomized self-adaptation in evolution strategies, Evol Comput, 9, 2, 159-195 (2001)
[37] Hansen N. Compilation of results on the CEC benchmark function set. Technical Report, Institute of Computational Science, ETH Zurich, Switzerland; 2005. Available at \(\langle;\) http://www.ntu.edu.sg/home/epnsugan/index_files/CEC-05/compareresults.pdf \(\rangle;\); Hansen N. Compilation of results on the CEC benchmark function set. Technical Report, Institute of Computational Science, ETH Zurich, Switzerland; 2005. Available at \(\langle;\) http://www.ntu.edu.sg/home/epnsugan/index_files/CEC-05/compareresults.pdf \(\rangle;\)
[38] Hansen, N.; Kern, S., Evaluating the CMA evolution strategy on multimodal test functions, (Yao, X.; Burke, E.; Lozano, J. A.; Smith, J.; Merelo-Guervós, J. J.; Bullinaria, J. A.; etal., Proceedings of the international conference on parallel problem solving from nature. Lecture notes in computer science, vol. 3242 (2004), Springer: Springer Berlin, Heidelberg), 282-291
[39] Hart WE. Adaptive Global Optimization with Local Search. Ph.D. thesis, University of California, San Diego, California; 1994.; Hart WE. Adaptive Global Optimization with Local Search. Ph.D. thesis, University of California, San Diego, California; 1994.
[40] Hart WE, Krasnogor N, Smith JE, editors. Recent advances in memetic algorithms. Studies in fuzzyness and soft computing, vol. 166. Berlin, Heidelberg, New York: Springer; 2004.; Hart WE, Krasnogor N, Smith JE, editors. Recent advances in memetic algorithms. Studies in fuzzyness and soft computing, vol. 166. Berlin, Heidelberg, New York: Springer; 2004. · Zbl 1060.68101
[41] Hart, W. E.; Krasnogor, N.; Smith, J. E., Editorial introduction special issue on memetic algorithms, Evol Comput, 12, 3, v-vi (2004)
[42] Heitktter J. SAC-94 Suite of 0/1-multiple-knapsack problem instances, 2001. Available at \(\langle;\) http://elib.zib.de/pub/Packages/mp-testdata/ip/sac94-suite \(\rangle;\); Heitktter J. SAC-94 Suite of 0/1-multiple-knapsack problem instances, 2001. Available at \(\langle;\) http://elib.zib.de/pub/Packages/mp-testdata/ip/sac94-suite \(\rangle;\)
[43] Herrera, F.; Lozano, M., Gradual distributed real-coded genetic algorithms, IEEE Trans Evol Comput, 4, 1, 43-63 (2000)
[44] Ho, S. L.; Yang, S.; Ni, G.; Wong, H. C., A particle swarm optimization method with enhanced global search ability for design optimizations of electromagnetic devices, IEEE Trans Magn, 42, 4, 1107-1110 (2006)
[45] Hoos, H. H.; Stützle, T., Stochastic local search: foundations and applications (2004), Morgan Kaufmann Publishers: Morgan Kaufmann Publishers California · Zbl 1126.68032
[46] García S, Molina D, Lozano M, Herrera F. A study on the use of nonparametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 2009; in press.; García S, Molina D, Lozano M, Herrera F. A study on the use of nonparametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 2009; in press. · Zbl 1191.68828
[47] Hu, J.; Goodman, E.; Seo, K.; Fan, Z.; Rosenberg, R., The hierarchical fair competition (HFC) framework for sustainable evolutionary algorithms, Evol Comput, 13, 2, 241-277 (2005)
[48] Jones, T., Crossover, macromutation, and population-based search, (Eshelman, L., Proceedings of the sixth international conference on genetic algorithms (1995), Morgan Kaufmann: Morgan Kaufmann California), 73-80
[49] Kazarlis, S. A.; Papadakis, S. E.; Theocharis, J. B.; Petridis, V., Microgenetic algorithms as generalized hill-climbing operators for GA optimization, IEEE Trans Evol Comput, 5, 3, 204-217 (2001)
[50] Katayama, K.; Narihisa, H., Iterated local search approach using genetic transformation to the travelling salesman problem, (Banzhaf, W.; Daida, J.; Eiben, A. E.; Garzon, M. H.; Honovar, V.; Jakiela, M.; etal., Proceedings of the genetic and evolutionary computation conference (1999), Morgan Kaufmann: Morgan Kaufmann California), 321-328
[51] Katayama, K.; Narihisa, H., A new iterated local search algorithm using genetic crossover for the travelling salesman problem, (Proceedings of the ACM symposium on applied computing (1999)), 302-306
[52] Kemenade, C. H.M., Cluster evolution strategies, enhancing the sampling density function using representatives, (Proceedings of the IEEE conference on evolutionary computation (1996), IEEE Press: IEEE Press New Jersey), 637-642
[53] Kennedy, J.; Eberhart, R. C., Swarm intelligence (2001), Morgan Kaufmann: Morgan Kaufmann Los Altos, CA
[54] Koumousis, V. K.; Katsaras, C. P., A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance, IEEE Trans Evol Comput, 10, 1, 19-28 (2006)
[55] Koza, J. R., Genetic programing (1992), The MIT press: The MIT press Cambridge · Zbl 0850.68161
[56] Krasnogor, N.; Smith, J. E., A memetic algorithm with self-adapting local search: TSP as a case study, (Proceedings of the 2000 international conference on genetic and evolutionary computation (2000), Morgan Kaufmann: Morgan Kaufmann California), 987-994
[57] Krasnogor, N.; Smith, J. E., A tutorial for competent memetic algorithms: model, taxonomy, and design issue, IEEE Trans Evol Comput, 9, 5, 474-488 (2005)
[58] Krishnakumar, K., Micro-genetic algorithms for stationary and nonstationary function optimization, (Proceedings of the SPIE intelligent control adaptive systems (1989)), 289-296
[59] Langdon, W. B.; Poli, R., Evolving problems to learn about particle swarm optimizers and other search algorithms, IEEE Trans Evol Comput, 11, 5, 561-578 (2007)
[60] Lima, C. F.; Pelikan, M.; Sastry, K.; Butz, M.; Goldberg, D. E.; Lobo, F. G., Substructural neighborhoods for local search in the Bayesian optimization algorithm, (Runarsson, T. P.; Beyer, H.-G.; Burke, E.; Merelo-Guervós, J. J.; Whitley, L. D.; Yao, X., Proceedings of the international conference on parallel problem solving from nature. Lecture notes in computer science, vol. 4193 (2006), Springer: Springer Berlin, Heidelberg), 232-241
[61] Lozano, M.; Herrera, F.; Krasnogor, N.; Molina, D., Real-coded memetic algorithms with crossover hill-climbing, Evol Comput, 12, 3, 273-302 (2004)
[62] Lozano, M.; Herrera, F.; Cano, J. R., Replacement strategies to maintain useful diversity in steady-state genetic algorithms, Inf Sci, 178, 4421-4433 (2008)
[63] Lourenço, H. R.; Martin, O. C.; Stützle, T., Iterated local search, (Glover, F.; Kochenberger, G., Handbook of metaheuristics (2003), Kluwer Academic Publishers: Kluwer Academic Publishers Massachusetts), 321-353 · Zbl 1116.90412
[64] Meloni, C.; Naso, D.; Turchiano, B., Multi-objective evolutionary algorithms for a class of sequencing problems in manufacturing environments, (Proceedings of the IEEE international conference on systems, man and cybernetics, vol. 1 (2003)), 8-13
[65] Merz P. Memetic algorithms for combinatorial optimization problems: fitness landscapes and effective search strategies. Dissertation, University of Siegen, Germany; 2000.; Merz P. Memetic algorithms for combinatorial optimization problems: fitness landscapes and effective search strategies. Dissertation, University of Siegen, Germany; 2000.
[66] Milano, M.; Roli, A., MAGMA: a multiagent architecture for metaheuristics, IEEE Trans Syst Man Cybern B, 33, 2, 925-941 (2004)
[67] Molina D, Lozano M, García-Martínez C, Herrera F. Memetic algorithms for continuous optimization based on local search chains. Evol Comput 2009; in press.; Molina D, Lozano M, García-Martínez C, Herrera F. Memetic algorithms for continuous optimization based on local search chains. Evol Comput 2009; in press.
[68] Moscato, P.; Cotta, C., A gentle introduction to memetic algorithms, (Glover, F.; Kochenberger, G., Handbook of metaheuristics (2003), Kluwer Academic Publishers: Kluwer Academic Publishers Massachusetts), 105-144 · Zbl 1107.90459
[69] Mühlenbein, H.; Schomisch, M.; Born, J., The parallel genetic algorithm as function optimizer, (Belew, R.; Booker, L. B., Proceedings of the international conference on genetic algorithms (1991), Morgan Kaufmann: Morgan Kaufmann California), 271-278 · Zbl 0735.65040
[70] Mühlenbein, H.; Schlierkamp-Voosen, D., Predictive models for the breeder genetic algorithm I. Continuous parameter optimization, Evol Comput, 1, 25-49 (1993)
[71] Mutoh, A.; Tanahashi, F.; Kato, S.; Itoh, H., Efficient real-coded genetic algorithms with flexible-step crossover, IEEJ Electron Inf Syst, 126, 5, 654-660 (2006)
[72] Nagata, Y.; Kobayashi, S., Edge assembly crossover: a high-power genetic algorithm for the traveling salesman problem, (Bäck, T., Proceedings of the international conference on genetic algorithms (1997), Morgan Kaufmann: Morgan Kaufmann Los Altos, CA), 450-457
[73] Noman, N.; Iba, H., Accelerating differential evolution using an adaptive local search, IEEE Trans Evol Comput, 12, 1, 107-125 (2008)
[74] Ong, Y. S.; Krasnogor, N.; Ishibuchi, H., Guest editorial: special issue on memetic algorithms, IEEE Trans Systems Man Cybern Part B: Cybern, 37, 1, 2-5 (2007)
[75] O’Reilly, U. M.; Oppacher, F., Hybridized crossover-based search techniques for program discovery, (IEEE international conference on evolutionary computation 1995 (1995), IEEE Press: IEEE Press Piscataway, New Jersey), 573-578
[76] Papadakis, S. E.; Theocharis, J. B., A GA-based fuzzy modeling approach for generating TSK models, Fuzzy Sets Syst, 131, 2, 121-152 (2002) · Zbl 1010.93500
[77] Parthasarathy, P. V.; Goldberg, D. E.; Burns, S. A., Tackling multimodal problems in hybrid genetic algorithms, (Whitley, D., Proceedings of the genetic and evolutionary computation conference (2001), Morgan Kaufmann: Morgan Kaufmann California), 775
[78] Pelikan, M.; Goldberg, D. E.; Cantú-Paz, E., Linkage problem, distribution estimation, and Bayesian networks, Evol Comput, 8, 3, 1063-6560 (2000)
[79] Pelikan, M.; Hartmann, A.; Lin, T. K., Parameter-less hierarchical Bayesian optimization algorithm, (Lobo, F. G.; Lima, C. F.; Michalewicz, Z., Parameter setting in evolutionary algorithms, SCI, vol. 54 (2007), Springer: Springer Berlin, Heidelberg), 225-239
[80] Petrowski, A., A clearing procedure as a niching method for genetic algorithms, (Proceedings of the IEEE conference on evolutionary computation (1996), IEEE Service Center: IEEE Service Center New Jersey), 798-803
[81] Potts, J. C.; Giddens, T. D.; Yadav, S. B., The development and evaluation of an improved genetic algorithm based on migration and artificial selection, IEEE Trans Syst Man Cybern, 24, 73-86 (1994)
[82] Preux, Ph.; Talbi, E.-G., Towards hybrid evolutionary algorithms, Int. Trans Oper Res, 6, 6, 557-570 (1999)
[83] Raidl, G. R., A unified view on hybrid metaheuristics, (Almeida, F.; Blesa Aguilera, M. J.B.; Blum, C.; Moreno Vega, J. M.; Pérez Pérez, M.; Roli, A.; etal., Hybrid metaheuristics. Lecture notes in computer science, vol. 4030 (2006), Springer: Springer Berlin, Heidelberg), 1-126
[84] Randall, M., Search space reduction as a tool for achieving intensification and diversification in ant colony optimisation, (Ali, M.; Dapoigny, R., Advances in applied artificial intelligence. Lecture notes in computer science, vol. 4031 (2006), Springer: Springer Berlin, Heidelberg), 254-261
[85] Rodriguez-Martin, I.; Salazar-Gonzalez, J. J., An iterated local search heuristic for a capacitated hub location problem, (Almeida, F.; Blesa Aguilera, M. J.B.; Blum, C.; Moreno Vega, J. M.; Pérez Pérez, M.; Roli, A.; etal., Hybrid metaheuristics. Lecture notes in computer science, vol. 4030 (2006), Springer: Springer Berlin, Heidelberg), 70-81
[86] Sastry, K.; Goldberg, D. E., Designing competent mutation operators via probabilistic model building of neighborhoods, (Deb, K.; Poli, R.; Banzhaf, W.; Beyer, H.-G.; Burke, E.; Darwen, P.; etal., Proceedings of the genetic and evolutionary computation conference. Lecture notes in computer science, vol. 3103 (2004), Springer: Springer Berlin, Heidelberg), 114-125
[87] Schlierkamp-Voosen, D.; Mühlenbein, H., Strategy adaptation by competing subpopulations, (Davidor, Y.; Schwefel, H. P.; Männer, R., Proceedings of the international conference on parallel problem solving from nature. Lecture notes in computer science, vol. 866 (1994), Springer-Verlag: Springer-Verlag Berlin, Germany), 199-208
[88] Seront, G.; Bersini, H., A new GA-local search hybrid for continuous optimization based on multi level single linkage clustering, (Whitley, D.; Goldberg, D.; Cantú-Paz, E.; Spector, L.; Parmee, I.; Beyer, H.-G., Proceedings of the genetic and evolutionary computation conference (2000), Morgan Kaufmann: Morgan Kaufmann California), 90-95
[89] Sheskin, D. J., Handbook of parametric and nonparametric statistical procedures (2003), CRC Press: CRC Press Boca Raton, FL · Zbl 0861.62001
[90] Sinha A, Goldberg DE. A Survey of hybrid genetic and evolutionary algorithms. ILLIGAL Technical Report 2003004; 2004.; Sinha A, Goldberg DE. A Survey of hybrid genetic and evolutionary algorithms. ILLIGAL Technical Report 2003004; 2004.
[91] Soak, S.-M.; Lee, S.-W.; Mahalik, N. P.; Ahn, B.-H., A new memetic algorithm using particle swarm optimization and genetic algorithm, (Knowledge-based intelligent information and engineering systems. Lecture notes in computer science, vol. 4251 (2006), Springer: Springer Berlin), 122-129
[92] Stützle, T., Iterated local search for the quadratic assignment problem, Eur J Oper Res, 174, 1519-1539 (2006) · Zbl 1103.90066
[93] Talbi, E.-G., A taxonomy of hybrid metaheuristics, J Heuristics, 8, 5, 541-565 (2002)
[94] Talbi, E.-G.; Bachelet, T., COSEARCH: a parallel cooperative metaheuristic, J Math Model Algorithms, 5, 5-22 (2006) · Zbl 1099.68742
[95] Tang, L. X.; Luo, J. X., A new ILS algorithm for parallel machine scheduling problems, J Intell Manuf, 17, 5, 609-619 (2006)
[96] Tang, J.; Lim, M. H.; Ong, Y. S., Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems, Soft Comput, 11, 9, 873-888 (2007)
[97] Thierens, D., Adaptive mutation rate control schemes in genetic algorithms, (Proceedings of the congress on evolutionary computation (2002), IEEE Press: IEEE Press New York), 980-985
[98] Thierens, D., Population-based iterated local search: restricting neighborhood search by crossover, (Deb, K.; Poli, R.; Banzhaf, W.; Beyer, H.-G.; Burke, E.; Darwen, P.; etal., Proceedings of the genetic and evolutionary computation conference. Lecture notes in computer science, vol. 3103 (2004), Springer: Springer Berlin, Heidelberg), 234-245
[99] Tounsi, M.; Ouis, S., An iterative local-search framework for solving constraint satisfaction problem, Appl Soft Comput, 8, 4, 1530-1535 (2008)
[100] Tsutsui, S.; Ghosh, A.; Corne, D.; Fujimoto, Y., A real coded genetic algorithm with an explorer and an exploiter population, (Proceedings of the international conference on genetic algorithms (1997), Morgan Kaufmann Publishers: Morgan Kaufmann Publishers California), 238-245
[101] Wei, L.; Zhao, M., A niche hybrid genetic algorithm for global optimization of continuous multimodal functions, Appl Math Comput, 160, 3, 649-661 (2005) · Zbl 1062.65065
[102] Weicai, Z.; Jing, L.; Mingzhi, X.; Licheng, J., A multiagent genetic algorithm for global numerical optimization, IEEE Trans Systems Man Cybern Part B, 34, 2, 1128-1141 (2004)
[103] Whitley, D.; Rana, S.; Dzubera, J.; Mathias, E., Evaluating evolutionary algorithms, Artif Intell, 85, 245-276 (1996)
[104] Zar, J. H., Biostatistical analysis (1999), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
[105] Zhang, Q.; Sun, J.; Tsang, E. P.K., Evolutionary algorithm with the guided mutation for the maximum clique problem, IEEE Trans Evol Comput, 9, 2, 192-200 (2005)
[106] Zhang, Q.; Sun, J., Iterated local search with guided mutation, (IEEE congress on evolutionary computation (2006), IEEE Press: IEEE Press New York), 924-929
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.