Bandini, Andrea 3-Selmer groups for curves \(y^2=x^3+a\). (English) Zbl 1174.11048 Czech. Math. J. 58, No. 2, 429-445 (2008). Summary: We explicitly perform some steps of a 3-descent algorithm for the curves \(y^2=x^3+a\), \(a\) a nonzero integer. In general this will enable us to bound the order of the 3-Selmer group of such curves. Cited in 3 Documents MSC: 11G05 Elliptic curves over global fields Keywords:elliptic curves; Selmer groups PDF BibTeX XML Cite \textit{A. Bandini}, Czech. Math. J. 58, No. 2, 429--445 (2008; Zbl 1174.11048) Full Text: DOI EuDML OpenURL References: [1] A. Bandini: Three-descent and the Birch and Swinnerton-Dyer conjecture. Rocky Mt. J. Math. 34 (2004), 13–27. · Zbl 1083.11040 [2] J. W. S. Cassels: Arithmetic on curves of genus 1. VIII: On conjectures of Birch and Swinnerton-Dyer. J. Reine Angew. Math. 217 (1965), 180–199. · Zbl 0241.14017 [3] Z. Djabri, E. F. Schaefer, N. P. Smart: Computing the p-Selmer group of an elliptic curve. Trans. Am. Math. Soc. 352 (2000), 5583–5597. · Zbl 0954.11022 [4] K. Rubin: Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication. Invent. Math. 89 (1987), 527–560. · Zbl 0628.14018 [5] K. Rubin: The ”main conjectures” of Iwasawa theory for imaginary quadratic fields. Invent. Math. 103 (1991), 25–68. · Zbl 0737.11030 [6] P. Satgé: Groupes de Selmer et corpes cubiques. J. Number Theory 23 (1986), 294–317. · Zbl 0601.14027 [7] E. F. Schaefer, M. Stoll: How to do a p-descent on an elliptic curve. Trans. Am. Math. Soc. 356 (2004), 1209–1231. · Zbl 1119.11029 [8] E. F. Schaefer: Class groups and Selmer groups. J. Number Theory 56 (1996), 79–114. · Zbl 0859.11034 [9] J. H. Silverman: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, Vol. 106. Springer, New York, 1986. · Zbl 0585.14026 [10] J. H. Silverman: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, Vol. 151. Springer, New York, 1994. · Zbl 0911.14015 [11] M. Stoll: On the arithmetic of the curves y 2 = x l + A and their Jacobians. J. Reine Angew. Math. 501 (1998), 171–189. · Zbl 0902.11024 [12] M. Stoll: On the arithmetic of the curves y 2 = x l + A. II. J. Number Theory 93 (2002), 183–206. · Zbl 1004.11038 [13] J. Top: Descent by 3-isogeny and 3-rank of quadratic fields. In: Advances in Number Theory (F. Q. Gouvea, N. Yui, eds.). Clarendon Press, Oxford, 1993, pp. 303–317. · Zbl 0804.11040 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.