×

Extreme preservers of maximal column rank inequalities of matrix sums over semirings. (English) Zbl 1174.15001

Summary: We characterize linear operators that preserve sets of matrix ordered pairs which satisfy extreme properties with respect to maximal column rank inequalities of matrix sums over semirings.

MSC:

15A04 Linear transformations, semilinear transformations
15A03 Vector spaces, linear dependence, rank, lineability
15A45 Miscellaneous inequalities involving matrices
16S50 Endomorphism rings; matrix rings
PDF BibTeX XML Cite
Full Text: DOI EuDML Link

References:

[1] L. B. Beasley, A. E. Guterman: Rank inequalities over semirings. J. Korean Math. Soc. 42 (2005), 223–241. · Zbl 1070.15014
[2] L. B. Beasley, A. E. Guterman: Linear preservers of extremes of rank inequalities over semirings: Factor rank. J. Math. Sci., New York 131 (2005), 5919–5938. · Zbl 1127.15001
[3] L. B. Beasley, A. E. Guterman, C. L. Neal: Linear preservers for Sylvester and Frobenius bounds on matrix rank. Rocky Mt. J. Math. 36 (2006), 67–80. · Zbl 1134.15003
[4] L. B. Beasley, S.-G. Lee, S.-Z. Song: Linear operators that preserve pairs of matrices which satisfy extreme rank properties. Linear Algebra Appl. 350 (2002), 263–272. · Zbl 1004.15025
[5] L. B. Beasley, N. J. Pullman: Semiring rank versus column rank. Linear Algebra Appl. 101 (1988), 33–48. · Zbl 0642.15002
[6] A. E. Guterman: Linear preservers for matrix inequalities and partial orderings. Linear Algebra Appl. 331 (2001), 75–87. · Zbl 0985.15018
[7] G. Marsaglia, P. Styan: When does rank(A + B) = rank(A) + rank(B)? Canad. Math. Bull. 15 (1972), 451–452. · Zbl 0252.15002
[8] P. Pierce et al.: A survey of linear preserver problems. Linear Multilinear Algebra 33 (1992), 1–119. · Zbl 0767.15006
[9] S.-Z. Song: Linear operators that preserve maximal column ranks of nonnegative integer matrices. Proc. Am. Math. Soc. 126 (1998), 2205–2211. · Zbl 0896.15009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.