×

zbMATH — the first resource for mathematics

Bilinear multipliers on Lorentz spaces. (English) Zbl 1174.42011
Summary: We give one sufficient and two necessary conditions for boundedness between Lebesgue or Lorentz spaces of several classes of bilinear multiplier operators closely connected with the bilinear Hilbert transform.

MSC:
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42B15 Multipliers for harmonic analysis in several variables
42B35 Function spaces arising in harmonic analysis
47H60 Multilinear and polynomial operators
PDF BibTeX XML Cite
Full Text: DOI EuDML Link
References:
[1] C. Bennet and R. Sharpley: Interpolation of operators. Pure and applied mathematics vol. 129, Academic Press, Inc., New York, 1988. · Zbl 0647.46057
[2] A. P. Calderón: Cauchy integrals on Lipschitz curves and related operators. Proc. Natl. Acad. Sci. USA 74 (1977), 1324–1327. · Zbl 0373.44003
[3] C. Fefferman: Pointwise convergence of Fourier series. Ann. Math. 98 (1973), 551–571. · Zbl 0268.42009
[4] J. Gilbert and A. Nahmod: Boundedness of bilinear operators with non-smooth symbols. Math. Res. Lett. 7 (2000), 767–778. · Zbl 0987.42017
[5] J. Gilbert and A. Nahmod: Bilinear operators with non-smooth symbols. J. Fourier Anal. Appl. 7 (2001), 437–469. · Zbl 0994.42014
[6] L. Grafakos and X. Li: Uniform bounds for the bilinear Hilbert transform I. Annals of Mathematics 159 (2004), 889–933. · Zbl 1071.44004
[7] M. Lacey: On the bilinear Hilbert transform. Doc. Math., vol. II (1998), 647–656. · Zbl 0963.42007
[8] M. Lacey and C. Thiele: L p bounds on the bilinear Hilbert transform for 2 < p < Ann. Math. 146 (1997), 693–724. · Zbl 0914.46034
[9] M. Lacey and C. Thiele: On Calderón’s conjecture. Ann. Math. 149 (1999), 475–496. · Zbl 0934.42012
[10] M. Lacey: The bilinear maximal function maps into L p for 2/3 < p 1. Ann. Math. 151 (2000), 35–57. · Zbl 0967.47031
[11] R. Larsen: An introduction to the theory of multipliers, vol. 175. Springer-Verlag, 1971. · Zbl 0213.13301
[12] C. Muscalu, T. Tao and C. Thiele: Multilinear operators given by singular multipliers. J. Amer. Math. Soc. 15 (2002), 469–496. · Zbl 0994.42015
[13] C. Muscalu, T. Tao and C. Thiele: Uniform estimates on multi-linear operators with modulation symmetry. J. Anal. Math. 88 (2002), 255–309. · Zbl 1041.42013
[14] C. Thiele: On the bilinear Hilbert transform. Universität Kiel, Habilitation, 1998. · Zbl 0915.42011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.