On the maximal signless Laplacian spectral radius of graphs with given matching number. (English) Zbl 1175.05090

Summary: Let \(\mathcal{G}_{n,\beta}\) be the set of simple graphs of order \(n\) with given matching number \(\beta\). In this paper, we investigate the maximal signless Laplacian spectral radius in \(\mathcal{G}_{n,\beta}\) and characterize the extremal graphs with maximal signless Laplacian spectral radius.


05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
15A18 Eigenvalues, singular values, and eigenvectors
05C70 Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.)
05C90 Applications of graph theory
Full Text: DOI


[1] W. H. Haemers and E. Spence, Enumeration of cospectral graphs, European J. Combin. 25 (2004), no. 2, 199-211. · Zbl 1033.05070 · doi:10.1016/S0195-6698(03)00100-8
[2] J. A. Bondy and U. S. R. Murty, Graph theory with applications , American Elsevier Publishing Co., Inc., New York, 1976. · Zbl 1226.05083
[3] Y. Fan, B. S. Tam, J. Zhou, Maximizing spectral radius of unoriented Laplacian matrix over bicyclic graphs of given order, Linear Multilinear Algebra 56 (2008), no. 4, 381-397. · Zbl 1146.05032 · doi:10.1080/03081080701306589
[4] M. Desai and V. Rao, A characterization of the smallest eigenvalue of a graph, J. Graph Theory 18 (1994), no. 2, 181-194. · Zbl 0792.05096 · doi:10.1002/jgt.3190180210
[5] D. Cvetković, P. Rowlinson and S. K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007), no. 1, 155-171. · Zbl 1113.05061 · doi:10.1016/j.laa.2007.01.009
[6] R. B. Bapat, J. W. Grossman and D. M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra 46 (1999), no. 4, 299-312. · Zbl 0940.05042 · doi:10.1080/03081089908818623
[7] J. W. Grossman, D. M. Kulkarni and I. E. Schochetman, Algebraic graph theory without orientation, Linear Algebra Appl. 212/213 (1994), 289-307. · Zbl 0817.05047 · doi:10.1016/0024-3795(94)90407-3
[8] D. Cvetković, Signless Laplacians and line graphs, Bull. Cl. Sci. Math. Nat. Sci. Math. No. 30 (2005), 85-92. · Zbl 1119.05066 · doi:10.2298/BMAT0530085C
[9] L. Lovász, M.D. Plummer, Matching theory, Ann. Discrete Math. 29 (1986) 471-480. · Zbl 0618.05001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.