zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects. (English) Zbl 1175.34035
The authors consider the following Dirichlet boundary value problem with impulses $$\left\{\aligned &-u''(t)+g(t)u(t)=f(t,u(t)) \quad \text{a.e.}\,\, t\in [0,T]\\ &u(0)=u(T)=0,\\ & \Delta u'(t_j)=u'(t_j^+)-u'(t_j^-)=I_j(u(t_j)), \,\,\, j=1,2,\dots, p, \endaligned \right. $$ where $t_0=0<t_1<t_2<\dots<t_p<t_{p+1}=T,$ $g\in L^{\infty}[0,T],$ $f: [0,T]\times {\Bbb R}\to {\Bbb R}$ is continuous and $I_j: {\Bbb R}\to {\Bbb R},$ $j=1,2,\dots,p$ are continuous. Existence and multiplicity results are obtained via Lax-Milgram theorem and critical points theorems. The main results are illustrated by examples.

MSC:
34B37Boundary value problems for ODE with impulses
58E05Abstract critical point theory
WorldCat.org
Full Text: DOI
References:
[1] Benchohra, M.; Henderson, J.; Ntouyas, S.: Impulsive differential equations and inclusions. (2006) · Zbl 1130.34003
[2] Samoilenko, A. M.; Perestyuk, N. A.: Impulsive differential equations. (1995) · Zbl 0837.34003
[3] Haddad, W. M.; Chellaboina, V.; Nersesov, S. G.; Sergey, G.: Impulsive and hybrid dynamical systems. Stability, dissipativity, and control. (2006) · Zbl 1114.34001
[4] Nieto, J. J.: Impulsive resonance periodic problems of first order. Appl. math. Lett. 15, 489-493 (2002) · Zbl 1022.34025
[5] Nieto, J. J.; Rodriguez-Lopez, R.: Boundary value problems for a class of impulsive functional equations. Comput. math. Appl. 55, 2715-2731 (2008) · Zbl 1142.34362
[6] Chu, J.; Nieto, J. J.: Impulsive periodic solutions of first-order singular differential equations. Bull. London math. Soc. 40, 143-150 (2008) · Zbl 1144.34016
[7] Z. Zhang, R. Yuan, An application of variational methods to Dirichlet boundary value problem with impulse, Nonlinear Anal. RWA, in press (doi:10.1016/j.nonrwa.2008.10.044)
[8] Z. Liu, Impulsive perturbations in a periodic delay differential equation model of plankton allelopathy, Nonlinear Anal. RWA, in press (doi:10.1016/j.nonrwa.2008.11.017)
[9] Y.K. Chang, J.J. Nieto, W.S. Li, On impulsive hyperbolic differential inclusions with nonlocal initial conditions, J. Optim. Theory Appl., in press, (doi:10.1007/s10957-008-9468-1) · Zbl 1159.49042
[10] H. Zhang, Z. Li, Variational approach to impulsive differential equations with periodic boundary conditions, Nonlinear Anal. RWA, in press (doi:10.1016/j.nonrwa.2008.10.016)
[11] Carter, T. E.: Necessary and sufficient conditions for optimal impulsive rendezvous with linear equations of motion. Dynam. control 10, 219-227 (2000) · Zbl 0980.93058
[12] Zhang, H.; Xu, W.; Chen, L.: A impulsive infective transmission SI model for pest control. Math. methods appl. Sci. 30, 1169-1184 (2007) · Zbl 1155.34328
[13] Wang, W. B.; Shen, J. H.; Nieto, J. J.: Permanence periodic solution of predator prey system with Holling type functional response and impulses. Discrete dyn. Nat. soc. (2007) · Zbl 1146.37370
[14] Zeng, G. Z.; Wang, F. Y.; Nieto, J. J.: Complexity of delayed predator-prey model with impulsive harvest and Holling type-II functional response. Adv. complex syst. 11, 77-97 (2008) · Zbl 1168.34052
[15] Nieto, J. J.; Rodriguez-Lopez, R.: Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations. J. math. Anal. appl. 318, 593-610 (2006) · Zbl 1101.34051
[16] Luo, Z.; Nieto, J. J.: New results of periodic boundary value problem for impulsive integro-differential equations. Nonlinear anal. 70, 2248-2260 (2009) · Zbl 1166.45002
[17] Nieto, J. J.; Rodriguez-Lopez, R.: New comparison results for impulsive integro-differential equations and applications. J. math. Anal. appl. 328, 1343-1368 (2007) · Zbl 1113.45007
[18] Wang, W.; Zhang, L.; Liang, Z.: Initial value problems for nonlinear impulsive integro-differential equations in Banach space. J. math. Anal. appl. 320, 510-527 (2006) · Zbl 1097.45011
[19] Ahmad, B.; Nieto, J. J.: Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear anal. 60, 3291-3298 (2008) · Zbl 1158.34049
[20] Liu, K.; Yang, G.: Cone-valued Lyapunov functions and stability for impulsive functional differential equations. Nonlinear anal. 69, 2184-2191 (2008) · Zbl 1151.34063
[21] E. Hernandez, H.R. Henriquez, M.A. McKibben, Existence results for abstract impulsive second-order neutral functional differential equations, Nonlinear Anal., in press (doi:10.1016/j.na.2008.03.062)
[22] Li, Y. K.: Positive periodic solutions of nonlinear differential systems with impulses. Nonlinear anal. 68, 2389-2405 (2008) · Zbl 1162.34064
[23] Liu, X.; Willms, A. R.: Impulsive controllability of linear dynamical systems with applications to maneuvers of spacecraft. Math. probl. Eng. 2, 277-299 (1996) · Zbl 0876.93014
[24] Prado, A. F. B.A.: Bi-impulsive control to build a satellite constellation. Nonlinear dyn. Syst. theory 5, 169-175 (2005) · Zbl 1128.70015
[25] Zhang, W.; Fan, M.: Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays. Math. comput. Modelling 39, 479-493 (2004) · Zbl 1065.92066
[26] Yan, J.; Zhao, A.; Nieto, J. J.: Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka--Volterra systems. Math. comput. Modelling 40, 509-518 (2004) · Zbl 1112.34052
[27] Li, W.; Huo, H.: Global attractivity of positive periodic solutions for an impulsive delay periodic model of respiratory dynamics. J. comput. Appl. math. 174, 227-238 (2005) · Zbl 1070.34089
[28] Shen, J. H.: Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays. Nonlinear anal. RWA 10, 227-243 (2009) · Zbl 1154.34372
[29] Zhang, X.; Shuai, Z.; Wang, K.: Optimal impulsive harvesting policy for single population. Nonlinear anal. RWA 4, 639-651 (2003) · Zbl 1011.92052
[30] D’onofrio, A.: On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Appl. math. Lett. 18, 729-732 (2005) · Zbl 1064.92041
[31] Zhang, H.; Chen, L. S.; Nieto, J. J.: A delayed epidemic model with stage-structure and pulses for management strategy. Nonlinear anal. RWA 9, 1714-1726 (2008) · Zbl 1154.34394
[32] Nieto, J. J.; O’regan, D.: Variational approach to impulsive differential equations. Nonlinear anal. RWA 10, 680-690 (2009) · Zbl 1167.34318
[33] Pasquero, S.: On the simultaneous presence of unilateral and kinetic constraints in time-dependent impulsive mechanics. J. math. Phys. 47 (2006) · Zbl 1112.70014
[34] Tian, Y.; Ge, W. G.: Applications of variational methods to boundary value problem for impulsive differential equations. Proc. edinb. Math. soc. 51, 509-527 (2008) · Zbl 1163.34015
[35] Lee, E. K.; Lee, Y. H.: Multiple positive solutions of singular two point boundary value problems for second order impulsive differential equation. Appl. math. Comput. 158, 745-759 (2004) · Zbl 1069.34035
[36] Lin, X. N.; Jiang, D. Q.: Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations. J. math. Anal. appl. 321, 501-514 (2006) · Zbl 1103.34015
[37] Mawhin, J.; Willem, M.: Critical point theory and Hamiltonian systems. (1989) · Zbl 0676.58017
[38] Chipot, M.: Elements of nonlinear analysis. (2000) · Zbl 0964.35002
[39] Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations. Cbmsreg. conf. Ser. math. 65 (1986)