×

Experimental verification of a four-dimensional Chua’s system and its fractional order chaotic attractors. (English) Zbl 1175.34061

Summary: This paper introduces a modified Chua’s system which is a smooth four-dimensional continuous-time autonomous chaotic system with a cubic nonlinearity. Some dynamical behaviors of this 4-D Chua’s system are further investigated by means of Poincaré mapping, parameter phase portraits, equilibrium points, bifurcations and calculated Lyapunov exponents. Moreover, using RC-opamp and analog multiplier we describe a simple electronic circuit for hardware implementation of the 4-D Chua’s system which differ from previously reported Chua’s circuits. Various attractors of experimental results from this chaotic oscillator are in good agreement with theoretical analysis. In particular, based on the approximation theory of fractional-order operator, a relevant analog circuit diagram of this fractional-order modified Chua’s system is designed with \(\alpha = 0.9\). Observation results demonstrate that chaos exists indeed in this fractional-order modified Chua’s system with an order as low as 3.6. This fractional-order oscillation circuit, for the first time in the literature, realizes high-dimensional Chua’s chaotic system.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34C28 Complex behavior and chaotic systems of ordinary differential equations
34A08 Fractional ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/S0960-0779(02)00438-1 · Zbl 1033.37019 · doi:10.1016/S0960-0779(02)00438-1
[2] DOI: 10.1109/81.622992 · doi:10.1109/81.622992
[3] DOI: 10.1109/9780470545393 · doi:10.1109/9780470545393
[4] DOI: 10.1109/TCT.1964.1082270 · doi:10.1109/TCT.1964.1082270
[5] DOI: 10.1109/9.159595 · Zbl 0825.58027 · doi:10.1109/9.159595
[6] DOI: 10.1142/S0218127499001024 · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[7] Chua L. O., IEEE Trans. Circuits Syst.-I 33 pp 1073–
[8] DOI: 10.1109/31.55064 · Zbl 0706.94026 · doi:10.1109/31.55064
[9] Chua L. O., IEICE Trans. Fund. 76 pp 704–
[10] DOI: 10.1142/S0129183106008625 · Zbl 1103.37020 · doi:10.1142/S0129183106008625
[11] DOI: 10.1016/j.physleta.2006.09.042 · Zbl 1170.37308 · doi:10.1016/j.physleta.2006.09.042
[12] Grigorenko I., Phys. Rev. Lett. 91 pp 101–
[13] DOI: 10.1109/81.404062 · doi:10.1109/81.404062
[14] DOI: 10.1142/9789814360258 · doi:10.1142/9789814360258
[15] DOI: 10.1109/81.298367 · doi:10.1109/81.298367
[16] Li C., Physica A 29 pp 441–
[17] DOI: 10.1016/j.chaos.2004.02.035 · Zbl 1069.37025 · doi:10.1016/j.chaos.2004.02.035
[18] DOI: 10.1016/j.chaos.2004.02.013 · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013
[19] DOI: 10.1016/j.chaos.2004.02.060 · Zbl 1060.37027 · doi:10.1016/j.chaos.2004.02.060
[20] Liu L., Acta Phys. Sin. 55 pp 3933–
[21] Liu L., Chin. Phys. Lett. 24 pp 2756–
[22] Liu L., Chin. Phys. 16 pp 1897–
[23] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[24] DOI: 10.1142/S0218127402004620 · Zbl 1063.34510 · doi:10.1142/S0218127402004620
[25] Lü J., IEEE Trans. Circuits Syst.-I 50 pp 198–
[26] Lu J., Chin. Phys. 16 pp 1586–
[27] DOI: 10.1109/TCS.1986.1085862 · doi:10.1109/TCS.1986.1085862
[28] Oldham K. B., The Fractional Calculus (1974) · Zbl 0292.26011
[29] Podlubny I., Fractional Differential Equations (1999) · Zbl 0924.34008
[30] DOI: 10.1016/j.physleta.2005.12.030 · Zbl 1187.37050 · doi:10.1016/j.physleta.2005.12.030
[31] Robinson R. C., An Introduction to Dynamical Systems: Continuous and Discrete (2004) · Zbl 1073.37001
[32] DOI: 10.1016/0375-9601(76)90101-8 · Zbl 1371.37062 · doi:10.1016/0375-9601(76)90101-8
[33] DOI: 10.1109/TAC.1984.1103551 · Zbl 0532.93025 · doi:10.1109/TAC.1984.1103551
[34] DOI: 10.1049/el:19960630 · doi:10.1049/el:19960630
[35] Wajdi M. A., Chaos Solit. Fract. 18 pp 693–
[36] Wang F., Chin. Phys. 15 pp 963–
[37] Wang X., Chaos 17 pp 033106-1–
[38] Wolf A., Physica D 160 pp 285–
[39] Wu S., Proc. IEEE 75 pp 1022–
[40] DOI: 10.1109/81.841929 · doi:10.1109/81.841929
[41] DOI: 10.1002/cta.255 · doi:10.1002/cta.255
[42] DOI: 10.1109/TCSI.2007.904670 · Zbl 1374.94932 · doi:10.1109/TCSI.2007.904670
[43] Yu S., IEEE Trans. Circuits Syst.-I 52 pp 1459–
[44] DOI: 10.1109/TCSI.2007.904651 · Zbl 1374.94933 · doi:10.1109/TCSI.2007.904651
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.