zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New oscillation criteria for second-order nonlinear neutral delay differential equations. (English) Zbl 1175.34087
Summary: Several new oscillation criteria for the second-order nonlinear neutral delay differential equation $$[r(t)|x(t) + p(t)x[\sigma (t)])^{\prime }|^{m-1}(x(t) + p(t)x[\sigma (t)])^{\prime }]^{\prime } + q(t)f(x[\tau (t)]) = 0,\quad t \geq t_0$$ are established. These oscillation criteria extend and improve some known results. An interesting example illustrating the importance of our results is also provided.

34K11Oscillation theory of functional-differential equations
34K40Neutral functional-differential equations
Full Text: DOI
[1] Džurina, J.; Stavroulakis, I. P.: Oscillation criteria for second-order delay differential equations, Appl. math. Comput. 140, 445-453 (2003) · Zbl 1043.34071 · doi:10.1016/S0096-3003(02)00243-6
[2] Grace, S. R.: Oscillation theorems for nonlinear differential equations of second order, J. math. Anal. appl. 171, 220-241 (1992) · Zbl 0767.34017 · doi:10.1016/0022-247X(92)90386-R
[3] Grammatikopoulos, M. K.; Ladays, G.; Meimaridou, A.: Oscillation of second order neutral delay differential equations, Rat. mat. 1, 267-274 (1985) · Zbl 0581.34051
[4] Lagnese, J.; Rogovchenko, Y. V.: Oscillation criteria for certain nonlinear differential equation, J. math. Anal. appl. 229, 399-416 (1999) · Zbl 0921.34034 · doi:10.1006/jmaa.1998.6148
[5] Li, H. J.; Yeh, C. C.: Oscillation criteria for second order neutral delay equations, Comput. math. Appl. 36, No. 10--12, 123-132 (1998) · Zbl 0933.39027 · doi:10.1016/S0898-1221(98)80015-1
[6] Rath, R. N.; Misra, N.; Panhy, L. N.: Oscillatory and asymptotic behaviour of a nonlinear second order neutral differential equations, Math. slovaca 57, No. 2, 157-170 (2007) · Zbl 1150.34026 · doi:10.2478/s12175-007-0006-7
[7] Rogovchenko, Y. V.: On oscillation of second order nonlinear delay differential equation, Funkcial. ekvac. 43, 1-29 (2000) · Zbl 1142.34359
[8] Sun, Yuan Gong; Meng, Fan Wei: Note on the paper of džurina and stavroulakis, Appl. math. Comput. 174, 1634-1641 (2006) · Zbl 1096.34048 · doi:10.1016/j.amc.2005.07.008
[9] Xu, Run; Meng, Fanwei: Some new oscillation criteria for second order quasi-linear neutral delay differential equations, Appl. math. Comput. 182, 797-803 (2006) · Zbl 1115.34341 · doi:10.1016/j.amc.2006.04.042
[10] Xu, Run; Meng, Fanwei: Oscillation criteria for second order quasi-linear neutral delay differential equations, Appl. math. Comput. 192, 216-222 (2007) · Zbl 1193.34137 · doi:10.1016/j.amc.2007.01.108