zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability and Hopf bifurcation analysis on a ring of four neurons with delays. (English) Zbl 1175.34092
Authors’ abstract: We consider a four-neuron ring with self-feedback and delays. By analyzing the associated characteristic equation, linear stability is investigated and Hopf bifurcations are demonstrated, as well as the stability and direction of the Hopf bifurcation are determined by employing the normal form method and the center manifold reduction. Numerical simulations are presented to illustrate the results.

34K18Bifurcation theory of functional differential equations
34K13Periodic solutions of functional differential equations
92B20General theory of neural networks (mathematical biology)
Full Text: DOI
[1] Faria, T.: On a planar system modelling a neuron network with memory, Journal of differential equation 168, 129-149 (2000) · Zbl 0961.92002 · doi:10.1006/jdeq.2000.3881
[2] Yuan, Z.; Huang, L.; Chen, Y.: Convergence and periodicity of solutions for a discrete-time network model of two neurons, Mathematical and computer modelling 35, 941-950 (2002) · Zbl 1045.92002 · doi:10.1016/S0895-7177(02)00061-4
[3] Hopfield, J. J.: Neurons with graded response have collective computational properties like two-state neurons, Proceedings of the national Academy of sciences of the USA 81, 3088-3092 (1984)
[4] Marcus, C. M.; Westervelt, R. M.: Stability of analog neural networks with delay, Physical review A 39, 347-359 (1989)
[5] Gopalsamy, K.; Leung, I.: Delay induced periodicity in a neural network of excitation and inhibition, Physica D 89, No. 1, 395-426 (1996) · Zbl 0883.68108 · doi:10.1016/0167-2789(95)00203-0
[6] Liao, X.; Yu, J.: Qualitative analysis of bi-directional associative memory with time delays, International journal of circuit theory and applications 26, No. 3, 219-229 (1998) · Zbl 0915.94012 · doi:10.1002/(SICI)1097-007X(199805/06)26:3<219::AID-CTA991>3.0.CO;2-I
[7] Driessche, P. V. D.; Zou, X.: Global attractivity in delayed Hopfield neural network models, SIAM journal on applied mathematics 58, No. 6, 1878-1890 (1998) · Zbl 0917.34036
[8] Cao, J.; Dong, M.: Exponential stability of delayed bidirectional associative memory networks, Applied mathematics and computation 135, 105-112 (2003) · Zbl 1030.34073 · doi:10.1016/S0096-3003(01)00315-0
[9] Joy, M.: Results concerning the absolute stability of delayed neural networks, Neural networks 13, 613-616 (2000)
[10] Arik, S.; Tavsanoglu, V.: Global asymptotic stability analysis of bidirectional associative memory neural networks with constant time delays, Neurocomputing 68, 161-176 (2005)
[11] Belair, J.; Campbell, S. A.; Den Driessche, P. Van: Frustration, stability, and delay-induced oscillations in a neural network model, SIAM journal of applied mathematics 56, No. 1, 245-255 (1996) · Zbl 0840.92003 · doi:10.1137/S0036139994274526
[12] Röst, G.: Neimark -- Sacker bifurcation for periodic delay differential equations, Nonlinear analysis 60, 1025-1044 (2005) · Zbl 1064.34058 · doi:10.1016/j.na.2004.08.043
[13] Chen, Y.; Wu, J.: Minimal instability and unstable set of a phaselocked periodic orbit in a delayed neural network, Physica D 134, 185-199 (1999) · Zbl 0942.34062 · doi:10.1016/S0167-2789(99)00111-6
[14] Guo, S.; Huang, L.: Hopf bifurcating periodic orbits in a ring of neurons with delays, Physica D 183, 19-44 (2003) · Zbl 1041.68079 · doi:10.1016/S0167-2789(03)00159-3
[15] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. H.: Theory and applications of Hopf bifurcation, (1981) · Zbl 0474.34002
[16] Li, X.; Wei, J.: On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays, Chaos, solitons and fractals 26, 519-526 (2005) · Zbl 1098.37070 · doi:10.1016/j.chaos.2005.01.019
[17] Ruan, S.; Wei, J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dynamics of continuous discrete and impulsive systems series A: mathematics and analytical 10, 863-874 (2003) · Zbl 1068.34072
[18] Shampine, L. F.; Thompson, S.: Solving ddes in Matlab, Applied numerical mathematics 37, 441-458 (2001) · Zbl 0983.65079 · doi:10.1016/S0168-9274(00)00055-6
[19] Eccles, J. C.; Ito, M.; Szenfagothai, J.: The cerebellum as neuronal machine, (1967)
[20] Hirsch, M. W.: Convergent activation dynamics in continuous-time networks, Neural networks 2, 331-349 (1989)
[21] Song, Y.; Han, M.; Wei, J.: Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays, Physica D 200, 185-204 (2005) · Zbl 1062.34079 · doi:10.1016/j.physd.2004.10.010
[22] Xiao, M.; Cao, J.: Stability and Hopf bifurcation in a delayed competitive web sites model, Physics letters A 353, 138-150 (2006) · Zbl 05675809
[23] Shayer, L. P.; Campbell, S. A.: Stability, bifurcation and multistability in a system of two coupled neurons with multiple time delays, SIAM journal of applied mathematics 61, No. 2, 673-700 (2000) · Zbl 0992.92013 · doi:10.1137/S0036139998344015
[24] Wu, J.: Symmetric functional-differential equations and neural networks with memory, Transactions of the American mathematical society 350, 4799-4838 (1998) · Zbl 0905.34034 · doi:10.1090/S0002-9947-98-02083-2
[25] Wei, J.; Yuan, Y.: Synchronized Hopf bifurcation analysis in a neural network model with delays, Journal of mathematical analysis and applications 312, 205-229 (2005) · Zbl 1085.34058 · doi:10.1016/j.jmaa.2005.03.049
[26] Cao, J.; Xiao, M.: Stability and Hopf bifurcation in a simplified BAM neural network with two time delays, IEEE transactions of neural networks 18, No. 2, 416-430 (2007)
[27] Cheng, Z.; Cao, J.: Bifurcation and stability analysis of a neural network model with distributed delays, Nonlinear dynamics 46, 363-373 (2006) · Zbl 1169.92001 · doi:10.1007/s11071-006-9026-z