zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability in distribution of neutral stochastic differential delay equations with Markovian switching. (English) Zbl 1175.34103
Summary: We focus on stochastic delay differential equations in the form: for $\tau>0$ $$d[x(t)-G(x(t-\tau))]=f(x(t),x(t-\tau),r(t))dt+g(x(t),x(t-\tau),r(t))dB(t),\quad t\ge 0,\tag 2.1$$ We are concerned with neutral stochastic differential delay equations with Markovian switching (NSDDEwMSs). We derive sufficient conditions for stability in distribution and generalize some results of Basak et al. and Yuan et al. to cover a class of much more general NSDDEwMSs. In the end, two examples are established to demonstrate the theory of our work.

34K50Stochastic functional-differential equations
60H10Stochastic ordinary differential equations
34K20Stability theory of functional-differential equations
Full Text: DOI
[1] Anderson, W. J.: Continuous-time Markov chains, (1991) · Zbl 0731.60067
[2] Basak, G. K.; Bisi, A.; Ghosh, M. K.: Stability of a random diffusion with linear drift, J. math. Anal. appl. 202, 604-622 (1996) · Zbl 0856.93102 · doi:10.1006/jmaa.1996.0336
[3] Hale, J. K.; Lunel, S. M. V.: Introduction to functional differential equations, (1993) · Zbl 0787.34002
[4] Kolmanovskii, V. B.; Nosov, V. R.: Stability and periodic modes of control systems with after effect, (1981) · Zbl 0457.93002
[5] Kolmanovskii, V.; Koroleva, N.; Maizenberg, T.; Mao, X.; Matasov, A.: Neutral stochastic differential delay equations with Markovian switching, Stoch. anal. Appl. 21, 819-847 (2003) · Zbl 1025.60028 · doi:10.1081/SAP-120022865
[6] Luo, J.: Comparison principle and stability of Itô stochastic differential delay equations with Poisson jump and Markovian switching, Nonlinear anal. 64, 253-262 (2006) · Zbl 1082.60054 · doi:10.1016/j.na.2005.06.048
[7] Luo, J.; Zou, J.; Hou, Z.: Comparison principle and stability criteria for stochastic delay differential equations with Markovian switching, Sci. China 46, 129-138 (2003) · Zbl 1217.60046 · doi:10.1360/03ys9014
[8] Mao, X.: Stochastic differential equations and applications, (1997) · Zbl 0892.60057
[9] Mao, X.; Matasov, A.; Piunovskiy, A. B.: Stochastic differential delay equations with Markovian switching, Bernoulli 6, 73-90 (2000) · Zbl 0956.60060 · doi:10.2307/3318634
[10] Mao, X.; Shen, Y.; Yuan, C.: Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching, Stoch. proc. Appl. 118, 1385-1406 (2008) · Zbl 1143.60041 · doi:10.1016/j.spa.2007.09.005
[11] Mao, X.; Yuan, C.: Stochastic differential equations with Markovian switching, (2006) · Zbl 1109.60043 · doi:10.1155/JAMSA/2006/59032
[12] Mohammed, S. -E.A.: Stochastic functional differential equations, (1984) · Zbl 0584.60066
[13] øksendal, B.: Stochastic differential equations, (2003) · Zbl 1025.60026
[14] Yuan, C.; Mao, X.: Robust stability and controllability of stochastic differential delay equations with Markovian switching, Automatica 40, 343-354 (2004) · Zbl 1040.93069 · doi:10.1016/j.automatica.2003.10.012
[15] Yuan, C.; Zou, J.; Mao, X.: Stability in distribution of stochastic differential delay equations with Markovian switching, Syst. control lett. 50, 195-207 (2003) · Zbl 1157.60330 · doi:10.1016/S0167-6911(03)00154-3