Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem. (English) Zbl 1175.35154

The authors construct two one-parameter families of monotonicity formulae for the study of free boundary points in a lower dimensional obstacle problem. They show the uniqueness and continuous dependence of the blowups at singular points of given homogeneity and prove a structural theorem for the singular set.


35R35 Free boundary problems for PDEs
35B44 Blow-up in context of PDEs
35B33 Critical exponents in context of PDEs
Full Text: DOI arXiv


[1] Almgren, F.J. Jr.: Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral currents. In: Minimal Submanifolds and Geodesics. Proc. Japan-United States Sem., Tokyo, 1977, pp. 1–6. North-Holland, Amsterdam (1979)
[2] Alt, H.W., Caffarelli, L.A., Friedman, A.: Variational problems with two phases and their free boundaries. Trans. Am. Math. Soc. 282(2), 431–461 (1984) · Zbl 0844.35137
[3] Athanasopoulos, I., Caffarelli, L.A.: Optimal regularity of lower dimensional obstacle problems. Zap. Naucn. Semin. St.-Peterb. Otd. Mat. Inst. Steklova (POMI) 310(35), 49–66 (2004). Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. [34], 226 (English, with English and Russian summaries); English transl. J. Math. Sci. (NY) 132(3), 274–284 (2006) · Zbl 1108.35038
[4] Athanasopoulos, I., Caffarelli, L.A., Salsa, S.: The structure of the free boundary for lower dimensional obstacle problems. Am. J. Math. 130(2), 485–498 (2008) · Zbl 1185.35339
[5] Caffarelli, L.A.: Further regularity for the Signorini problem. Commun. Partial Differ. Equ. 4(9), 1067–1075 (1979) · Zbl 0427.35019
[6] Caffarelli, L.A.: The obstacle problem revisited. J. Fourier Anal. Appl. 4(4–5), 383–402 (1998) · Zbl 0928.49030
[7] Caffarelli, L.A., Rivière, N.M.: Asymptotic behaviour of free boundaries at their singular points. Ann. Math. (2) 106(2), 309–317 (1977) · Zbl 0364.35041
[8] Caffarelli, L., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008) · Zbl 1148.35097
[9] Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007) · Zbl 1143.26002
[10] Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall, CRC Financial Mathematics Series. Chapman and Hall, CRC, Boca Raton (2004) · Zbl 1052.91043
[11] Duvat, G., Lions, J.L.: Les inequations en mechanique et en physique. Dunod, Paris (1972)
[12] Friedman, A.: Variational Principles and Free-Boundary Problems. Pure and Applied Mathematics. Wiley, New York (1982). A Wiley-Interscience Publication · Zbl 0564.49002
[13] Garofalo, N., Lin, F.-H.: Monotonicity properties of variational integrals A p weights and unique continuation. Indiana Univ. Math. J. 35(2), 245–268 (1986) · Zbl 0678.35015
[14] Garofalo, N., Lin, F.-H.: Unique continuation for elliptic operators: a geometric-variational approach. Commun. Pure Appl. Math. 40(3), 347–366 (1987) · Zbl 0674.35007
[15] Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied Mathematics, vol. 8. Society for Industrial and Applied Mathematics, Philadelphia (1988) · Zbl 0685.73002
[16] Monneau, R.: On the number of singularities for the obstacle problem in two dimensions. J. Geom. Anal. 13(2), 359–389 (2003) · Zbl 1041.35093
[17] Monneau, R.: Pointwise estimates for Laplace equation. Applications to the free boundary of the obstacle problem with Dini coefficients. Preprint (2007) · Zbl 1178.35142
[18] Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007) · Zbl 1141.49035
[19] Ural’tseva, N.N.: On the regularity of solutions of variational inequalities. Usp. Mat. Nauk 42(6), 151–174 (1987) (Russian); English transl., Russ. Math. Surv. 42(6), 191–219 (1987)
[20] Weiss, G.S.: A homogeneity improvement approach to the obstacle problem. Invent. Math. 138(1), 23–50 (1999) · Zbl 0940.35102
[21] Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36(1), 63–89 (1934) · Zbl 0008.24902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.