zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Strong convergence of the iterative scheme based on the extragradient method for mixed equilibrium problems and fixed point problems of an infinite family of nonexpansive mappings. (English) Zbl 1175.49012
Summary: We introduce an iterative scheme based on the extragradient approximation method for finding a common element of the set of common fixed points of a countable family of nonexpansive mappings, the set of solutions of a mixed equilibrium problem, and the set of solutions of the variational inequality problem for a monotone $L$-Lipschitz continuous mapping in a real Hilbert space. Then, the strong convergence theorem is proved under some parameters controlling conditions. Applications to optimization problems are given. The results obtained in this paper improve and extend the recent ones announced by {\it R. Wangkeeree} [Fixed Point Theory Appl. 2008, Article ID 134148, 17 p. (2008; Zbl 1170.47051)], {\it P. Kumam} and {\it P. Katchang} [Nonlinear Anal., Hybrid Syst. 3, No. 4, 475--486 (2009; Zbl 1221.49011)] and many others.

MSC:
49J40Variational methods including variational inequalities
47H09Mappings defined by “shrinking” properties
47N10Applications of operator theory in optimization, convex analysis, programming, economics
WorldCat.org
Full Text: DOI
References:
[1] Ceng, L. C.; Yao, J. C.: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. J. comput. Appl. math. 214, 186-201 (2008) · Zbl 1143.65049
[2] C. Jaiboon, P. Kumam, A hybrid extragradient viscosity approximation method for solving equilibrium problems and fixed point problems of infinitely many nonexpansive mappings, Fixed Point Theory Appl., (2009) Article ID 762478 doi:10.1155/2009/374815 · Zbl 1186.47065
[3] Jaiboon, C.; Kumam, P.; Humphries, U. W.: Weak convergence theorem by an extragradient method for variaotinal inequality, equilibrium and fixed point problems. Bull. malays. Math. sci. Soc. 32, No. 2, 173-185 (2009) · Zbl 1223.47080
[4] Kumam, P.: A hybrid approximation method for equilibrium and fixed point problems for a monotone mapping and a nonexpansive mapping. Nonlinear anal. Hybrid syst. 2, No. 4, 1245-1255 (2008) · Zbl 1163.49003
[5] Kumam, P.: Strong convergence theorems by an extragradient method for solving variational inequalities and equilibrium problems in a Hilbert space. Turkish J. Math. 33, 85-98 (2009) · Zbl 1223.47083
[6] Kumam, P.: A new hybrid iterative method for solution of equilibrium problems and fixed point problems for an inverse strongly monotone operator and a nonexpansive mapping. J. appl. Math. comput. 29, No. 1, 263-280 (2009) · Zbl 1220.47102
[7] P. Kumam, A relaxed extragradient approximation method of two inverse-strongly monotone mappings for a general system of variational inequalities, fixed point and equilibrium problems, Bull. Iranian Math. Soc. (2009) (in press) · Zbl 1175.49009
[8] Kumam, W.; Kumam, P.: Hybrid iterative scheme by a relaxed extragradient method for solutions of equilibrium problems and a general system of variational inequalities with application to optimization. Nonlinear anal. Hybrid syst. (2009) · Zbl 1175.49009
[9] Plubtieng, S.; Kumam, P.: Weak convergence theorem for monotone mappings and a countable family of nonexpansive mappings. J. comput. Appl. math. 224, 614-621 (2009) · Zbl 1161.65042
[10] Yao, J. -C.; Chadli, O.: Pseudomonotone complementarity problems and variational inequalities. Handbook of generalized convexity and monotonicity, 501-558 (2005) · Zbl 1106.49020
[11] Zeng, L. C.; Schaible, S.; Yao, J. C.: Iterative algorithm for generalized set-valued strongly nonlinear mixed variational-like inequalities. J. optim. Theory appl. 124, 725-738 (2005) · Zbl 1067.49007
[12] Blum, E.; Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. student 63, 123-145 (1994) · Zbl 0888.49007
[13] Combettes, P. L.; Hirstoaga, S. A.: Equilibrium programming using proximal-like algorithms. Math. program. 78, 29-41 (1997)
[14] Flam, S. D.; Antipin, A. S.: Equilibrium programming using proximal-like algorithms. Math. program. 78, 29-41 (1997) · Zbl 0890.90150
[15] Kumam, P.; Jaiboon, C.: A new hybrid iterative method for mixed equilibrium problems and variational inequality problem for relaxed cocoercive mappings with application to optimization problems. Nonlinear anal. Hybrid syst. (2009) · Zbl 1221.49010
[16] Wangkeeree, R.; Kamraksa, U.: An iterative approximation method for solving a general system of variational inequality problems and mixed equilibrium problems. Nonlinear anal. Hybrid syst. (2009) · Zbl 1219.49009
[17] Takahashi, S.; Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. math. Anal. appl. 311, No. 1, 506-515 (2007) · Zbl 1122.47056
[18] Plubtieng, S.; Punpaeng, R.: A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces. J. math. Anal. appl. 336, 455-469 (2007) · Zbl 1127.47053
[19] Yao, Y.; Liou, J. -C.; Yao, J. -C: An extragradient method for fixed point problems and variational inequality problems. J. inequal. Appl., 12 (2007) · Zbl 1137.47057
[20] Takahashi, W.; Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. optim. Theory appl. 118, 417-428 (2003) · Zbl 1055.47052
[21] Peng, J. -W.; Yao, J. -C.: Strong convergence theorems of iterative scheme based on the extragradient method for mixed equilibrium problems and fixed point problems. Math. comput. Modelling 49, 1816-1828 (2009) · Zbl 1171.90542
[22] Browder, F. E.; Petryshyn, W. V.: Construction of fixed points of nonlinear mappings in Hilbert space. J. math. Anal. appl. 20, 197-228 (1967) · Zbl 0153.45701
[23] Liu, F.; Nashed, M. Z.: Regularization of nonlinear ill-posed variational inequalities and convergence rates. Set-valued anal. 6, 313-344 (1998) · Zbl 0924.49009
[24] Korpelevich, G. M.: The extragradient method for finding saddle points and other problems. Ekon. mat. Metody 12, 747-756 (1976) · Zbl 0342.90044
[25] Nadezhkina, N.; Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. optim. Theory appl. 128, 191-201 (2006) · Zbl 1130.90055
[26] Zeng, L. C.; Yao, J. C.: Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwanese J. Math. 10, 1293-1303 (2006) · Zbl 1110.49013
[27] Aoyama, K.; Kimura, Y.; Takahashi, W.; Toyoda, M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear anal. 67, 2350-2360 (2007) · Zbl 1130.47045
[28] Wangkeeree, R.: An extragradient approximation method for equilibrium problems and fixed point problems of a countable family of nonexpansive mappings. Fixed point theory appl., 17 (2008) · Zbl 1170.47051
[29] Deutsch, F.; Yamada, I.: Minimizing certain convex functions over the intersection of the fixed point set of nonexpansive mappings. Numer. funct. Anal. optim. 19, 33-56 (1998) · Zbl 0913.47048
[30] Wangkeeree, R.; Kamraksa, U.: A general iterative method for solving the variational inequality problem and fixed point problem of an infinite family of nonexpansive mappings in Hilbert spaces. Fixed point theory appl., 23 (2009) · Zbl 1168.47054
[31] Xu, H. K.: Iterative algorithms for nonlinear operators. J. London math. Soc. 66, 240-256 (2002) · Zbl 1013.47032
[32] Xu, H. K.: An iterative approach to quadratic optimization. J. optim. Theory appl. 116, 659-678 (2003) · Zbl 1043.90063
[33] Yamada, I.: The hybrid steepest descent method for the variational inequality problem of the intersection of fixed point sets of nonexpansive mappings. Inherently parallel algorithm for feasibility and optimization, 473-504 (2001) · Zbl 1013.49005
[34] Marino, G.; Xu, H. K.: A general iterative method for nonexpansive mapping in Hilbert spaces. J. math. Anal. appl. 318, 43-52 (2006) · Zbl 1095.47038
[35] Moudafi, A.: Viscosity approximation methods for fixed-points problems. J. math. Anal. appl. 241, 46-55 (2000) · Zbl 0957.47039
[36] Kumam, P.; Katchang, P.: A viscosity of extragradient approximation method for finding equilibrium problems, variational inequalities and fixed point problems for nonexpansive mappings. Nonlinear anal. Hybrid syst. (2009) · Zbl 1221.49011
[37] Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. amer. Math. soc. 73, 595-597 (1967) · Zbl 0179.19902
[38] Takahashi, W.: Nonlinear functional analysis. (2000) · Zbl 0997.47002
[39] Rockafellar, R. T.: On the maximality of sums of nonlinear monotone operators. Trans. amer. Math. soc. 149, 75-88 (1970) · Zbl 0222.47017
[40] Suzuki, T.: Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals. J. math. Anal. appl. 305, 227-239 (2005) · Zbl 1068.47085
[41] Xu, H. K.: Viscosity approximation methods for nonexpansive mappings. J. math. Anal. appl. 298, 279-291 (2004) · Zbl 1061.47060
[42] Peng, J. -W.; Yao, J. -C.: A new hybrid-extragradient method for generalized mixed equilibrium problems and fixed point problems and variational inequality problems. Taiwanese J. Math. 12, No. 6, 1401-1432 (2008) · Zbl 1185.47079
[43] Plubtieng, S.; Thammathiwat, T.: A viscosity approximation method for finding a common fixed point of nonexpansive and firmly nonexpansive mappings in Hilbert spaces. Thai J. Math. 6, No. 2, 377-390 (2008) · Zbl 1184.47047
[44] Martinet, B.: Perturbation des méthodes d’optimisation. RAIRO anal. Numér 12, 153-171 (1978) · Zbl 0379.90088
[45] Rockafellar, R. T.: Monotone operators and the proximal point algorithm. SIAM J. Control optim. 14, 877-898 (1976) · Zbl 0358.90053
[46] Ferris, M. C.: Finite termination of the proximal point algorithm. Math. program. 50, 359-366 (1991) · Zbl 0741.90051