zbMATH — the first resource for mathematics

Fitting a \(C^m\)-smooth function to data. III. (English) Zbl 1175.65025
Summary: Fix \(m,n\geq 1\). Given an \(N\)-point set \(E\subset \mathbb R^n\), we exhibit a list of \(O(N)\) subsets \(S_1,S_2,\dots,S_L\subset E\), each containing \(O(1)\) points, such that the following holds: Let \(f : E\to \mathbb R^n\). Suppose that, for each \(\ell = 1,\dots,L\), there exists \(F_\ell\in C^m(\mathbb R^n)\) with norm \(\leq 1\), agreeing with \(f\) on \(S_\ell\). Then there exists \(F\in C^m(\mathbb R^n)\), with norm \(O(1)\), agreeing with \(f\) on \(E\). We give an application to the problem of discarding outliers from the set \(E\).
[For part II see C.-L. Fefferman and B.Klartag, Rev. Mat. Iberoam. 25, No. 1, 49–273 (2009; Zbl 1170.65006)]

65D10 Numerical smoothing, curve fitting
65D17 Computer-aided design (modeling of curves and surfaces)
65D05 Numerical interpolation
Full Text: DOI Link
[1] E. Bierstone and P. D. Milman, ”\(\mathcal C^m\)-norms on finite sets and \(\mathcal C^m\) extension criteria,” Duke Math. J., vol. 137, iss. 1, pp. 1-18, 2007. · Zbl 1116.58005
[2] Y. Brudnyi and P. Shvartsman, ”Generalizations of Whitney’s extension theorem,” Internat. Math. Res. Notices, vol. 1994 no. 3, iss. 3, pp. 129-139, 1994. · Zbl 0845.57022
[3] P. B. Callahan and R. S. Kosaraju, ”A decomposition of multidimensional point sets with applications to \(k\)-nearest-neighbors and \(n\)-body potential fields,” J. Assoc. Comput. Mach., vol. 42, iss. 1, pp. 67-90, 1995. · Zbl 0886.68078
[4] C. Fefferman, ”A generalized sharp Whitney theorem for jets,” Rev. Mat. Iberoamericana, vol. 21, iss. 2, pp. 577-688, 2005. · Zbl 1102.58004
[5] C. Fefferman, ”Interpolation and extrapolation of smooth functions by linear operators,” Rev. Mat. Iberoamericana, vol. 21, iss. 1, pp. 313-348, 2005. · Zbl 1084.58003
[6] C. Fefferman and B. Klartag, ”Fitting a \(C^m\)-smooth function to data, I,” Ann. of Math., vol. 169, pp. 315-346, 2009. · Zbl 1175.41001
[7] C. Fefferman and B. Klartag, ”Fitting a \(C^m\)-smooth function to data, II,” Rev. Mat. Iberoamericana, vol. 25, pp. 49-273, 2009. · Zbl 1170.65006
[8] C. L. Fefferman, ”A sharp form of Whitney’s extension theorem,” Ann. of Math., vol. 161, iss. 1, pp. 509-577, 2005. · Zbl 1102.58005
[9] S. Har-Peled and M. Mendel, ”Fast construction of nets in low-dimensional metrics and their applications,” SIAM J. Comput., vol. 35, iss. 5, pp. 1148-1184, 2006. · Zbl 1100.68014
[10] B. Malgrange, Ideals of Differentiable Functions, Bombay: Tata Institute of Fundamental Research, 1967.
[11] P. Shvartsman, ”The Whitney extension problem and Lipschitz selections of set-valued mappings in jet-spaces,” Trans. Amer. Math. Soc., vol. 360, iss. 10, pp. 5529-5550, 2008. · Zbl 1167.46025
[12] J. von Neumann, ”First draft of a report on the EDVAC,” IEEE Ann. Hist. Comput., vol. 15, iss. 4, pp. 27-75, 1993. · Zbl 0944.01510
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.