zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergence in the incompressible limit of finite element approximations based on the Hu-Washizu formulation. (English) Zbl 1175.74083
Summary: The classical Hu-Washizu mixed formulation for plane problems in elasticity is examined afresh, with the emphasis on behavior in the incompressible limit. The classical continuous problem is embedded in a family of Hu-Washizu problems parametrized by a scalar $\alpha$ for which $\alpha = \lambda/\mu$ corresponds to the classical formulation, with $\lambda$ and $\mu$ being the Lamé parameters. Uniform well-posedness in the incompressible limit of the continuous problem is established for $\alpha \not= -1$. Finite element approximations are based on the choice of piecewise bilinear approximations for the displacements on quadrilateral meshes. Conditions for uniform convergence are made explicit. These conditions are shown to be met by particular choices of bases for stresses and strains, and include bases that are well known, as well as newly constructed bases. Though a discrete version of the spherical part of the stress exhibits checkerboard modes, it is shown that a $\lambda$-independent a priori error estimate for the displacement can be established. Furthermore, a $\lambda$-independent estimate is established for the post-processed stress. The theoretical results are explored further through selected numerical examples.

74S05Finite element methods in solid mechanics
74B05Classical linear elasticity
65N15Error bounds (BVP of PDE)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
Full Text: DOI
[1] Andelfinger U., Ramm E.(1993): EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int. J. Numer. Methods. Eng. 36: 1311--1337 · Zbl 0772.73071 · doi:10.1002/nme.1620360805
[2] Arnold D.N., Scott L.R., Vogelius M.(1988): Regular inversion of the divergence operator with dirichlet boundary conditions on a polygon. Annali Scuola Norm. Sup. Pisa, Serie 4(15): 169--192 · Zbl 0702.35208
[3] Bastian P., Birken K., Johannsen K., Lang S., Neuß N., Rentz--Reichert H., Wieners C. (1997): UG -- a flexible software toolbox for solving partial differential equations. Comput. Visual. Sci. 1: 27--40 · Zbl 0970.65129 · doi:10.1007/s007910050003
[4] Braess D.(1996): Stability of saddle point problems with penalty. M 2 AN. 30: 731--742 · Zbl 0860.65054
[5] Braess D.(1998): Enhanced assumed strain elements and locking in membrane problems. Comp. Methods. Appl. Mech. Eng. 165: 155--174 · Zbl 0949.74065 · doi:10.1016/S0045-7825(98)00037-1
[6] Braess D., Carstensen C., Reddy B.D.(2004): Uniform convergence and a posteriori error estimators for the enhanced strain finite element method. Numer. Math. 96: 461--479 · Zbl 1050.65097 · doi:10.1007/s00211-003-0486-5
[7] Brenner S.C., Sung L.(1992): Linear finite element methods for planar linear elasticity. Math. Comp. 59: 321--338 · Zbl 0766.73060 · doi:10.1090/S0025-5718-1992-1140646-2
[8] Brezzi F., Fortin M.(1991): Mixed and Hybrid Finite Element Methods. Springer, Berlin Heidelberg New York · Zbl 0788.73002
[9] Brezzi F., Fortin M.(2001): A minimal stabilization procedure for mixed finite element methods. Numer. Math. 89: 457--491 · Zbl 1009.65067 · doi:10.1007/PL00005475
[10] Djoko J.K., Lamichhane B.P., Reddy B.D., Wohlmuth B.I.(2006): Conditions for equivalence between the Hu-Washizu and related formulations, and computational behavior in the incompressible limit. Comp. Methods. Appl. Mech. Eng. 195: 4161--4178 · Zbl 1123.74020 · doi:10.1016/j.cma.2005.07.018
[11] Fortin M.(1977): An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numer. 11: 341--354 · Zbl 0373.65055
[12] Fraeijs de Veubeke B.M.(2001): Displacement and equilibrium models. Int. J. Numer. Methods. Eng. 52: 287--342 · Zbl 1065.74625 · doi:10.1002/nme.339
[13] Girault V., Raviart P.-A.(1986): Finite Element Methods for Navier--Stokes Equations. Springer, Berlin Heidelberg New York · Zbl 0585.65077
[14] Hu H.(1955): On some variational principles in the theory of elasticity and the theory of plasticity. Sci. Sin, 4: 33--54 · Zbl 0066.17903
[15] Kasper E.P., Taylor R.L.(2000): A mixed-enhanced strain method Part I: geometrically linear problems. Comp. Struct. 75: 237--250 · doi:10.1016/S0045-7949(99)00134-0
[16] Kasper E.P., Taylor R.L.(2000): A mixed-enhanced strain method Part II: geometrically nonlinear problems. Comp. Struct. 75: 251--260 · doi:10.1016/S0045-7949(99)00135-2
[17] Küssner M., Reddy B.D.(2001): The equivalent parallelogram and parallelepiped, and their application to stabilized finite elements in two and three dimensions. Comp. Methods. Appl. Mech. Eng. 190: 1967--1983 · Zbl 1049.74047 · doi:10.1016/S0045-7825(00)00217-6
[18] Pian T.H.H., Sumihara K.(1984): Rational approach for assumed stress finite elements. Int. J. Numer. Methods. Eng. 20: 1685--1695 · Zbl 0544.73095 · doi:10.1002/nme.1620200911
[19] Reddy B.D., Simo J.C.(1995): Stability and convergence of a class of enhanced strain methods. SIAM J. Numer. Anal. 32: 1705--1728 · Zbl 0855.73073 · doi:10.1137/0732077
[20] Simo J.C., Rifai M.S.(1990): A class of assumed strain methods and the method of incompatible modes. Int. J. Numer. Methods. Eng. 29: 1595--1638 · Zbl 0724.73222 · doi:10.1002/nme.1620290802
[21] Vogelius M.(1983): An analysis of the p-version of the finite element method for nearly incompressible materials Uniformly valid, optimal error estimates. Numer. Math. 41, 39--53 · Zbl 0504.65061 · doi:10.1007/BF01396304
[22] Washizu K.(1982): Variational Methods in Elasticity and Plasticity, 3rd edn. Pergamon Press, Oxford · Zbl 0498.73014
[23] Zhou T.-X., Nie Y.-F.(2001): Combined hybrid approach to finite element schemes of high performance. Int. J. Numer. Methods. Eng. 51: 181--202 · Zbl 0983.74078 · doi:10.1002/nme.151