zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A remark on a standard and linear vector network equilibrium problem with capacity constraints. (English) Zbl 1175.90068
Summary: (Weak) vector equilibrium principle with capacity constraints is introduced. A necessary condition that a vector minimum cost flow is a vector equilibrium flow with capacity constraints is obtained. When the number of paths connecting with each pair of source and sink is less than or equal to 2, a sufficient condition for a vector minimum cost flow to be a vector equilibrium flow is also obtained. A generalized (weak) vector equilibrium principle is also introduced. Without any additional assumption, a necessary and sufficient condition for a (weak) vector minimum cost flow to be a generalized (weak) vector equilibrium flow is obtained.

90B10Network models, deterministic (optimization)
90B20Traffic problems
Full Text: DOI
[1] Ahuja, R. K.; Magnanti, T. L.; Orlin, J. B.: Network flows: theory, algorithms and applications, (1993) · Zbl 1201.90001
[2] Assad, A. A.: Multicommodity network flows: A survey, Networks 8, 37-91 (1978) · Zbl 0381.90040 · doi:10.1002/net.3230080107
[3] G.Y. Chen, N.D. Yen, On the variational inequality model for network equilibrium, Internal Report 3.196 (724), Department of Mathematics, University of Pisa, 1993.
[4] Chen, G. Y.; Goh, C. J.; Yang, X. Q.: Vector network equilibrium problems and nonlinear scalarization methods, Mathematical methods of operations research 49, 239-253 (1999) · Zbl 0939.90014
[5] Current, J.; Marsh, M.: Multiobjective transportation network design and routing problems: taxonomy and annotation, European journal of operations research 65, 4-19 (1993) · Zbl 0775.90150 · doi:10.1016/0377-2217(93)90140-I
[6] Daniele, P.; Maugeri, A.; Oettli, W.: Time-dependent traffic equilibria, Journal of optimization theory and applications 103, 543-555 (1999) · Zbl 0937.90005 · doi:10.1023/A:1021779823196
[7] Daniele, P.; Franco, Giannessi; Antonino, Maugeri: Equilibrium problems and variational models. Including papers from the meeting held in Erice, June 23 -- July 2, 2000, Nonconvex optimization and its applications 68 (2003) · Zbl 1030.00031
[8] Daniele, P.; Maugeri, A.: Variational inequalities and discrete and continuum models of network equilibrium problems, Mathematical and computer modeling 35, 393-411 (2000)
[9] Friesz, T. L.; Anandalingam, G.; Mehta, N. J.; Nam, K.; Shah, S. J.; Tobin, R. L.: The multiobjective equilibrium network design problem revisited: A simulated annealing approach, European journal of operations research 65, 44-57 (1993) · Zbl 0772.90043 · doi:10.1016/0377-2217(93)90143-B
[10] Giannessi, F.; Maugeri, A.: Variational inequalities and network equilibrium problems, (1995) · Zbl 0834.00044
[11] Giannessi, F.: Vector variational inequalities and vector equilibria, (2000) · Zbl 0952.00009
[12] Goh, C. J.; Yang, X. Q.: Theory and methodology of vector equilibrium problem and vector optimization, European journal of operational research 116, 615-628 (1999) · Zbl 1009.90093
[13] Maurras, J. F.; Vaxes, Y.: Multicommodity network flow with jump constraints, Discrete mathematics 165/166, 481-486 (1997) · Zbl 0872.90038 · doi:10.1016/S0012-365X(96)00194-X
[14] Nagurney, A.: Network economics, (1999) · Zbl 1113.91331
[15] A. Nagurney, J. Dong, Supernetworks decision-making for the information age, Edward Elgar, Cheltenham, UK, Northampton, MA, USA, 2002. · Zbl 1025.91500
[16] Tzeng, G. H.; Chen, C. H.: Multiobjective decision making for traffic assignment, IEEE transactions of engineering management 40, 180-187 (1993)
[17] Yang, X. Q.; Goh, C. J.: On vector variational inequalities: application to vector equilibria, Journal of optimization theory and applications 95, 431-443 (1997) · Zbl 0892.90158 · doi:10.1023/A:1022647607947