zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Passivity-based sliding mode control of uncertain singular time-delay systems. (English) Zbl 1175.93065
Summary: The problem of Sliding Mode Control (SMC) with passivity of a class of uncertain nonlinear singular time-delay systems is studied. An integral-type switching surface function is designed by taking the singular matrix into account, thus the resulting sliding mode dynamics is a full-order uncertain singular time-delay system. By introducing some slack matrices, a delay-dependent sufficient condition is proposed in terms of linear matrix inequality, which guarantees the sliding mode dynamics to be generalized quadratically stable and robustly passive. The passification solvability condition is then established. Moreover, a SMC law and an adaptive SMC law are synthesized to drive the system trajectories onto the predefined switching surface in a finite time. Finally, a numerical example is provided to illustrate the effectiveness of the proposed theory.

93B35Sensitivity (robustness) of control systems
93B12Variable structure systems
93D99Stability of control systems
93C10Nonlinear control systems
93C41Control problems with incomplete information
Full Text: DOI
[1] Boukas, E. -K.: Stabilization of stochastic singular nonlinear hybrid systems, Nonlinear analysis 64, 217-228 (2006) · Zbl 1090.93048 · doi:10.1016/j.na.2005.05.066
[2] Calcev, G.; Gorez, R.; De Neyer, M.: Passivity approach to fuzzy control systems, Automatica 34, 339-344 (1998) · Zbl 0919.93047 · doi:10.1016/S0005-1098(97)00202-1
[3] Chen, F., Zhang, W., & Wang, W. (2006). Robust passive control for uncertain singular system with state delay. In Proceedings of the 2006 American control conference (pp. 1535-1538)
[4] Chou, C. -H.; Cheng, C. -C.: Design of adaptive variable structure controllers for perturbed time-varying state-delay systems, Journal of the franklin institute 338, 35-46 (2001) · Zbl 0966.93101 · doi:10.1016/S0016-0032(00)00070-3
[5] Dai, L.: Singular control systems, (1989) · Zbl 0669.93034
[6] Dong, X. -Z.; Zhang, Q. -L.: Robust passive control for singular systems with time-varying uncertainties, Kongzhi lilun yu yinyong/control theory and applications 21, 517-520 (2004) · Zbl 1138.93344
[7] Gao, H.; Chen, T.; Chai, T.: Passivity and passification for networked control systems, SIAM journal on control and optimization 46, 1299-1322 (2007) · Zbl 1140.93425 · doi:10.1137/060655110
[8] Gao, H.; Wang, C.: Comments and further results on: A descriptor system approach to \mathcal{h}$\infty $control of linear time-delay systems, IEEE transactions on automatic control 48, 520-525 (2003)
[9] Khargonekar, P. P.; Petersen, I. R.; Zhou, K.: Robust stabilization of uncertain linear systems: quadratic stabilizability and \mathcal{h}$\infty $control theory, IEEE transactions on automatic control 35, 356-361 (1990) · Zbl 0707.93060 · doi:10.1109/9.50357
[10] Lam, J.; Shu, Z.; Xu, S.; Boukas, E. -K.: Robust \mathcal{h}$\infty $control of descriptor discrete-time Markovian jump systems, International journal of control 80, 374-385 (2007) · Zbl 1120.93057 · doi:10.1080/00207170600999322
[11] Lozano, R.; Brogliato, B.; Egeland, O.; Maschke, B.: Dissipative systems analysis and control: theory and applications, (2000) · Zbl 0958.93002
[12] Mahmoud, M. S.; Ismail, A.: Passivity and passification of time-delay systems, Journal of mathematical analysis and applications 292, 247-258 (2004) · Zbl 1084.93014 · doi:10.1016/j.jmaa.2003.11.055
[13] Niculescu, S. -I.; Lozano, R.: On the passivity of linear delay systems, IEEE transactions on automatic control 46, 460-464 (2001) · Zbl 1056.93610 · doi:10.1109/9.911424
[14] Niu, Y.; Ho, D. W. C.; Lam, J.: Robust integral sliding mode control for uncertain stochastic systems with time-varying delay, Automatica 41, 873-880 (2005) · Zbl 1093.93027 · doi:10.1016/j.automatica.2004.11.035
[15] Niu, Y.; Ho, D. W. C.; Wang, X.: Sliding mode control for itĂ´ stochastic systems with Markovian switching, Automatica 43, 1784-1790 (2007) · Zbl 1119.93063 · doi:10.1016/j.automatica.2007.02.023
[16] Perruquetti, W.; Barbot, J. P.: Sliding mode control in engineering, (2002)
[17] Shi, P.; Boukas, E. K.; Agarwal, R. K.: Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay, IEEE transactions on automatic control 44, 2139-2144 (1999) · Zbl 1078.93575 · doi:10.1109/9.802932
[18] Shi, P.; Xia, Y.; Liu, G. P.; Rees, D.: On designing of sliding-mode control for stochastic jump systems, IEEE transactions on automatic control 51, 97-103 (2006)
[19] Utkin, V.: Sliding modes in control optimization, (1992) · Zbl 0748.93044
[20] Vidyasagar, M.: Nonlinear systems analysis, (1993) · Zbl 0900.93132
[21] Wang, Z.; Qiao, H.; Burnham, K. J.: On stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters, IEEE transactions on automatic control 47, 640-646 (2002)
[22] Wu, L.; Gao, H.: Sliding mode control of two-dimensional systems in roesser model, IET control theory and applications 2, 352-364 (2008)
[23] Wu, L.; Wang, C.; Zeng, Q.: Observer-based sliding mode control for a class of uncertain nonlinear neutral delay systems, Journal of the franklin institute 345, 233-253 (2008) · Zbl 1167.93326 · doi:10.1016/j.jfranklin.2007.09.001
[24] Xia, Y.; Jia, Y.: Robust sliding-mode control for uncertain time-delay systems: an LMI approach, IEEE transactions on automatic control 48, 1086-1092 (2003)
[25] Xie, L.; Fu, M.; Li, H.: Passivity analysis and passification for uncertain signal processing systems, IEEE transactions on signal processing 46, 2394-2403 (1998)
[26] Xu, S.; Lam, J.: Robust control and filtering of singular systems, (2006) · Zbl 1114.93005
[27] Xu, S.; Lam, J.; Yang, C.: Robust \mathcal{h}$\infty $control for uncertain singular systems with state delay, International journal of robust and nonlinear control 13, 1213-1223 (2003) · Zbl 1039.93019 · doi:10.1002/rnc.837
[28] Xu, S.; Van Dooren, P.; Stefan, R.; Lam, J.: Robust stability and stabilization for singular systems with state delay and parameter uncertainty, IEEE transactions on automatic control 47, 1122-1128 (2002)
[29] Yan, J. -J.: Sliding mode control design for uncertain time-delay systems subjected to a class of nonlinear inputs, International journal of robust and nonlinear control 13, 519-532 (2003) · Zbl 1023.93015 · doi:10.1002/rnc.735
[30] Zhu, S.; Zhang, C.; Cheng, Z.; Feng, J.: Delay-dependent robust stability criteria for two classes of uncertain singular time-delay systems, IEEE transactions on automatic control 52, 880-885 (2007)