zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Extension of unbiased minimum-variance input and state estimation for systems with unknown inputs. (English) Zbl 1175.93213
Summary: This paper extends the existing results on joint input and state estimation to systems with arbitrary unknown inputs. The objective is to derive an optimal filter in the general case where not only unknown inputs affect both the system state and the output, but also the direct feedthrough matrix has arbitrary rank. The paper extends both the results of {\it S. Gillijns} and {\it B. De Moor} [Automatica 43, No. 5, 934--937 (2007; Zbl 1117.93366)] and {\it M. Darouach, M. Zasadzinski} and {\it M. Boutayeb} [ Automatica 39, No. 5, 867-876 (2003; Zbl 1036.93058)]. The resulting filter is an Extension of the Recursive Three-Step Filter (ERTSF) and serves as a unified solution to the addressed unknown input filtering problem. The relationship between the ERTSF and the existing literature results is also addressed.

MSC:
93E10Estimation and detection in stochastic control
93C41Control problems with incomplete information
93E11Filtering in stochastic control
WorldCat.org
Full Text: DOI
References:
[1] Borisov, A. V.; Pankov, A. R.: Optimal filtering in stochastic discrete-time systems with unknown inputs, IEEE transactions on automatic control 39, 2461-2464 (1994) · Zbl 0825.93823 · doi:10.1109/9.362848
[2] Chen, J.; Patton, R. J.: Optimal filtering and robust fault diagnosis of stochastic systems with unknown disturbances, IEE Proceedings control theory and applications 143, 31-36 (1996) · Zbl 0850.93748 · doi:10.1049/ip-cta:19960059
[3] Darouach, M.; Zasadzinski, M.: Unbiased minimum variance estimation for systems with unknown exogenous inputs, Automatica 33, 717-719 (1997) · Zbl 0874.93086 · doi:10.1016/S0005-1098(96)00217-8
[4] Darouach, M.; Zasadzinski, M.; Boutayeb, M.: Extension of minimum variance estimation for systems with unknown inputs, Automatica 39, 867-876 (2003) · Zbl 1036.93058 · doi:10.1016/S0005-1098(03)00006-2
[5] Friedland, B.: Treatment of bias in recursive filtering, IEEE transactions on automatic control 14, 359-367 (1969)
[6] Gillijns, S.; De Moor, B.: Unbiased minimum-variance input and state estimation for linear discrete-time systems, Automatica 43, 111-116 (2007) · Zbl 1140.93480 · doi:10.1016/j.automatica.2006.08.002
[7] Gillijns, S.; De Moor, B.: Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough, Automatica 43, 934-937 (2007) · Zbl 1117.93366 · doi:10.1016/j.automatica.2006.11.016
[8] Hou, M.; Patton, R. J.: Optimal filtering for systems with unknown inputs, IEEE transactions on automatic control 43, 445-449 (1998) · Zbl 0904.93037 · doi:10.1109/9.661621
[9] Hsieh, C. -S.: Robust two-stage Kalman filters for systems with unknown inputs, IEEE transactions on automatic control 45, 2374-2378 (2000) · Zbl 0990.93130 · doi:10.1109/9.895577
[10] Hsieh, C.-S. (2006). Optimal filtering for systems with unknown inputs via unbiased minimum-variance estimation. In Proceedings of IEEE Tencon 2006
[11] Hsieh, C. -S.; Chen, F. -C.: Optimal solution of the two-stage Kalman estimator, IEEE transactions on automatic control 44, 194-199 (1999) · Zbl 1056.93629 · doi:10.1109/9.739135
[12] Kerwin, W. S.; Prince, J. L.: On the optimality of recursive unbiased state estimation with unknown inputs, Automatica 36, 1381-1383 (2000) · Zbl 0964.93076 · doi:10.1016/S0005-1098(00)00046-7
[13] Kitanidis, P. K.: Unbiased minimum-variance linear state estimation, Automatica 23, 775-778 (1987) · Zbl 0627.93065 · doi:10.1016/0005-1098(87)90037-9
[14] Rao, C. R.; Mitra, S. K.: Generalized inverse of matrices and its applications, (1971) · Zbl 0236.15004
[15] Sundaram, S., & Hadjicostis, C. N. (2006). Optimal state estimators for linear systems with unknown inputs. In Proceedings of 45th IEEE conference on decision and control (pp. 4763-4768)