×

Computing genus-zero twisted Gromov-Witten invariants. (English) Zbl 1176.14009

The paper under review concerns twisted Gromov-Witten invariants of orbifolds. Fixing an orbifold \(\mathcal X\), we let \(\mathcal X_{g,n,d}\) be the moduli space of stable maps to \(\mathcal X\). Each vector bundle \(E\) over \(\mathcal X\) gives rise to a \(K\)-theory class \[ E_{g,n,d}=\pi_{!} f^{\star} E \] via pushforward from the universal family of the pullback of \(E\). The twisted Gromov-Witten invariants are integrals of the form \[ \int_{[\mathcal X_{g, n,d}]^{vir}} c(E_{g,n,d}) \prod_{i=1}^{n} {\text{ev}}_i^{\star} \alpha_i \psi_i^{k_i} \] for nonnegative integers \(k_i\) and classes \(\alpha_i\in H^{\star}_{orb}(\mathcal X).\) Here \(c\) denotes an invertible multiplicative characteristic class.
The computation of twisted invariants is considered in this paper. In particular, the authors prove a “quantum Lefschetz theorem” expressing genus zero one point twisted invariants of complete intersections in terms of the invariants of the ambient orbifold. Furthermore, the genus zero potential of \(\left[\mathbb C^2/\mathbb Z_n\right]\) are computed. Calculations for \(\left[\mathbb C^3/\mathbb Z_3\right]\) also also presented.
The appendix proves Ruan’s Crepant Resolution Conjecture for type A surface singularity. Letting \(Y\) be the crepant resolution of the singularity \(\mathcal X=\left[\mathbb C^2/\mathbb Z_n\right]\), the Conjecture gives an isomorphism between the small quantum cohomology of \(Y\) and the quantum cohomology of \(\mathcal X\) after analytic continuation in the quantum parameters and specializiation of some quantum parameters to roots of unity. In fact, a stronger statement of Bryan-Graber is proved here, matching the big quantum cohomology after analytic continuation and specialization, via a linear isomorphism preserving the orbifold Poincaré pairing.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14A20 Generalizations (algebraic spaces, stacks)
53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] D. Abramovich, T. Graber, and A. Vistoli, “Algebraic orbifold quantum products” in Orbifolds in Mathematics and Physics (Madison, Wis., 2001) , Contemp. Math. 310 , Amer. Math. Soc., Providence, 2002, 1–24. · Zbl 1067.14055
[2] -, Gromov-Witten theory of Deligne-Mumford stacks , Amer. J. Math. 130 (2008), 1337–1398. · Zbl 1193.14070
[3] M. Aganagic, V. Bouchard, and A. Klemm, Topological strings and (almost) modular forms , Comm. Math. Phys. 277 (2008), 771–819. · Zbl 1165.81037
[4] M. Audin, Torus Actions on Symplectic Manifolds , 2nd rev. ed., Progr. Math. 93 , Birkhäuser, Basel, 2004. · Zbl 1062.57040
[5] S. Barannikov, Quantum periods, I: Semi-infinite variations of Hodge structures , Internat. Math. Res. Notices 2001 , no. 23, 1243–1264. · Zbl 1074.14510
[6] A. Bayer and C. Cadman, Quantum cohomology of \([C^N/\mu_r]\) , preprint,\arxiv0705.2160v1[math.AG] · Zbl 1223.14064
[7] A. Bertram, Another way to enumerate rational curves with torus actions , Invent. Math. 142 (2000), 487–512. · Zbl 1031.14027
[8] L. A. Borisov, L. Chen, and G. G. Smith, The orbifold Chow ring of toric Deligne-Mumford stacks , J. Amer. Math. Soc. 18 (2005), 193–215. · Zbl 1178.14057
[9] T. Bridgeland, Stability conditions and Kleinian singularities , preprint,\arxivmath/0508257v2[math.AG] · Zbl 1169.14303
[10] J. Bryan, personal communication, 2007.
[11] J. Bryan and A. Gholampour, Root systems and the quantum cohomology of ADE resolutions , Algebra Number Theory 2 (2008), 369–390. · Zbl 1159.14028
[12] J. Bryan and T. Graber, The crepant resolution conjecture , preprint,\arxivmath/0610129v2[math.AG] · Zbl 1198.14053
[13] J. Bryan, T. Graber, and R. Pandharipande, The orbifold quantum cohomology of \(\mathbb C^ 2/\mathbb Z_ 3\) and Hurwitz-Hodge integrals , J. Algebraic Geom. 17 (2008), 1–28. · Zbl 1129.14075
[14] J. Bryan and Y. Jiang, in preparation.
[15] P. Candelas, X. C. De La Ossa, P. S. Green, and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory , Nuclear Phys. B 359 (1991), 21–74. · Zbl 1098.32506
[16] W. Chen and Y. Ruan, “Orbifold Gromov-Witten theory” in Orbifolds in Mathematics and Physics (Madison, Wis., 2001) , Contemp. Math. 310 , Amer. Math. Soc., Providence, 2002, 25–85. · Zbl 1091.53058
[17] -, A new cohomology theory of orbifold , Comm. Math. Phys. 248 (2004), 1–31. · Zbl 1063.53091
[18] T.-M. Chiang, A. Klemm, S.-T. Yau, and E. Zaslow, Local mirror symmetry: Calculations and interpretations , Adv. Theor. Math. Phys. 3 (1999), 495–565. · Zbl 0976.32012
[19] T. Coates, Givental’s Lagrangian cone and \(S^1\)-equivariant Gromov-Witten theory , Math. Res. Lett. 15 (2008), 15–31. · Zbl 1169.14037
[20] T. Coates, A. Corti, H. Iritani, and H.-H. Tseng, The crepant resolution conjecture for type A surface singularities , preprint,\arxiv0704.2034v3[math.AG]
[21] -, in preparation.
[22] T. Coates, A. Corti, Y.-P. Lee, and H.-H. Tseng, The quantum orbifold cohomology of weighted projective spaces , preprint,\arxivmath/0608481v6[math.AG] · Zbl 1213.53106
[23] T. Coates and A. Givental, Quantum Riemann-Roch, Lefschetz and Serre , Ann. of Math. (2) 165 (2007), 15–53. · Zbl 1189.14063
[24] T. Coates, H. Iritani, and H.-H. Tseng, Wall-Crossings in Toric Gromov-Witten Theory, I: Crepant Examples , preprint,\arxivmath/0611550v4[math.AG] · Zbl 1184.53086
[25] D. A. Cox and S. Katz, Mirror symmetry and algebraic geometry , Math. Surveys Monogr. 68 , Amer. Math. Soc., Providence, 1999. · Zbl 0951.14026
[26] R. Dijkgraaf and E. Witten, Mean field theory, topological field theory and multi-matrix models , Nuclear Phys. B 342 (1990), 486–522.
[27] C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory , Invent. Math. 139 (2000), 173–199. · Zbl 0960.14031
[28] J. Fernandez, Hodge structures for orbifold cohomology , Proc. Amer. Math. Soc. 134 (2006), 2511–2520. · Zbl 1096.14012
[29] E. Getzler, “The jet-space of a Frobenius manifold and higher-genus Gromov-Witten invariants” in Frobenius Manifolds , Aspects Math. E36 , Vieweg, Wiesbaden, Germany, 2004, 45–89. · Zbl 1093.53094
[30] A. B. Givental, Equivariant Gromov-Witten invariants , Internat. Math. Res. Notices 1996 , no. 13, 613–663. · Zbl 0881.55006
[31] -, “A mirror theorem for toric complete intersections” in Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996) , Progr. Math. 160 , Birkhäuser, Boston, 1998, 141–175. · Zbl 0936.14031
[32] -, Gromov-Witten invariants and quantization of quadratic Hamiltonians , Mosc. Math. J. 1 (2001), 551–568. · Zbl 1008.53072
[33] -, “Symplectic geometry of Frobenius structures” in Frobenius Manifolds , Aspects Math. E36 , Vieweg, Wiesbaden, Germany, 2004 , 91–112. · Zbl 1075.53091
[34] T. Graber and R. Pandharipande, Localization of virtual classes , Invent. Math. 135 (1999), 487–518. · Zbl 0953.14035
[35] K. Hori and C. Vafa, Mirror symmetry , preprint,\arxivhep-th/0002222v3
[36] S. Hosono, “Central charges, symplectic forms, and hypergeometric series in local mirror symmetry” in Mirror Symmetry , V , AMS/IP Stud. Adv. Math. 38 , Amer. Math. Soc., Providence, 2006, 405–439. · Zbl 1114.14025
[37] H. Iritani, Convergence of quantum cohomology by quantum Lefschetz , preprint,\arxivmath/0506236v3[math.DG] · Zbl 1160.14044
[38] A. Ishii, K. Ueda, and H. Uehara, Stability conditions on \(A_n\) singularities , preprint,\arxivmath/0609551v1[math.AG]
[39] A. Ishii and H. Uehara, Autoequivalences of derived categories on the minimal resolutions of \(A_n\)-singularities on surfaces , J. Differential Geom. 71 (2005), 385–435. · Zbl 1097.14013
[40] T. J. Jarvis and T. Kimura, “Orbifold quantum cohomology of the classifying space of a finite group” in Orbifolds in Mathematics and Physics (Madison, Wis., 2001) , Contemp. Math. 310 , Amer. Math. Soc., Providence, 2002, 123–134. · Zbl 1065.14069
[41] B. Kim, Quantum hyperplane section theorem for homogeneous spaces , Acta Math. 183 (1999), 71–99. · Zbl 1023.14028
[42] B. Kim, A. Kresch, and T. Pantev, Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee , J. Pure Appl. Algebra 179 (2003), 127–136. · Zbl 1078.14535
[43] Y.-P. Lee, Quantum Lefschetz hyperplane theorem , Invent. Math. 145 (2001), 121–149. · Zbl 1082.14056
[44] B. H. Lian, personal communication, 2007.
[45] B. H. Lian, K. Liu, and S.-T. Yau, Mirror principle, I , Asian J. Math. 1 (1997), 729–763. · Zbl 0953.14026
[46] -, “Mirror principle, II” in Sir Michael Atiyah: a Great Mathematician of the Twentieth Century , Asian J. Math. 3 , Int. Press, Somerville, Mass., 1999, 109–146. · Zbl 0974.14025
[47] -, “Mirror principle, III” in Surveys in Differential Geometry , Surv. Differ. Geom. VII , Int. Press, Somerville, Mass., 2000, 433–474. · Zbl 1047.14502
[48] K. Mayr, Über die Lösung algebraischer Gleichungssysteme durch hypergeometrische Funktionen , Monatsh. Math. Phys. 45 (1936), 280–313. · Zbl 0016.35702
[49] D. Maulik, personal communication, 2007.
[50] -, Gromov-Witten theory of \(A_n\)-resolutions , preprint,\arxiv08022681v1[math.AG]
[51] M. Mcquillan, “Formal formal schemes” in Topology and Geometry: Commemorating SISTAG , Contemp. Math. 314 , Amer. Math. Soc., Providence, 2002, 187–198. · Zbl 1029.14001
[52] D. Mumford, “Towards an enumerative geometry of the moduli space of curves” in Arithmetic and Geometry, Vol. II , Progr. Math. 36 , Birkhäuser, Boston, 1983, 271–328. · Zbl 0554.14008
[53] R. Pandharipande, Rational curves on hypersurfaces (after A. Givental) , Astérisque 252 (1998), 307–340., Séminaire Bourbaki 1997/98, no. 848. · Zbl 0932.14029
[54] F. Perroni, Chen-Ruan cohomology of \(ADE\) singularities , Internat. J. Math. 18 (2007), 1009–1059. · Zbl 1149.14010
[55] -, personal communication, 2007.
[56] H. Skarke, Non-perturbative gauge groups and local mirror symmetry , J. High Energy Phys. 2001 , no. 11, paper 13.
[57] J. Stienstra, “GKZ Hypergeometric Structures” in Arithmetic and Geometry around Hypergeometric Functions , Progr. Math. 260 , Birkhäuser, Basel, 2007, 313–371. · Zbl 1119.14003
[58] B. Toen, Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford , \(K\)-Theory 18 (1999), 33–76. · Zbl 0946.14004
[59] H.-H. Tseng, Orbifold Quantum Riemann-Roch, Lefschetz and Serre , preprint, \arxivmath/0506111v3 [math.AG] \endthebibliography
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.