×

Maximal and minimal ranks of the common solution of some linear matrix equations over an arbitrary division ring with applications. (English) Zbl 1176.15020

The first author studied the system of linear matrix equations \(A_1X = C_1, XB_2 = C_2, A_3XB_3 = C_3\) and \(A_4XB_4 = C_4\) over a von Neumann regular ring \(R\) with unity [Q. Wang, Acta Math. Sin., Engl. Ser. 21, No. 2, 323–334 (2005; Zbl 1083.15021)].
In this paper, the authors establish the formulas of the maximal and minimal ranks of the common solution of the linear matrix equations \(A_1X = C_1, XB_2 = C_2, A_3XB_3 = C_3\) and \(A_4XB_4 = C_4\) over an arbitrary division ring. Corresponding results in some special cases are also given. As an application, necessary and sufficient conditions for the invariance of the rank of the common solution mentioned above are presented. Some previously known results can be regarded as special cases of the results in this paper.

MSC:

15A24 Matrix equations and identities
15A03 Vector spaces, linear dependence, rank, lineability
15A09 Theory of matrix inversion and generalized inverses
15B33 Matrices over special rings (quaternions, finite fields, etc.)

Citations:

Zbl 1083.15021
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1007/978-1-4612-6101-8
[2] Lin C. Y., Math. Sci. Res. J. 10 pp 57–
[3] DOI: 10.1080/03081087408817070
[4] Mitra S. K., Sankhya (Ser. A) 35 pp 387–
[5] DOI: 10.1016/0024-3795(84)90166-6 · Zbl 0543.15011
[6] DOI: 10.1016/0024-3795(90)90377-O · Zbl 0712.15010
[7] DOI: 10.1080/03081080008818664 · Zbl 0970.15005
[8] DOI: 10.1080/03081080290019531 · Zbl 1006.15004
[9] DOI: 10.1016/S0024-3795(02)00345-2 · Zbl 1016.15003
[10] DOI: 10.1080/0308108031000114631 · Zbl 1040.15003
[11] Tian Y., New York J. Math. 9 pp 345–
[12] DOI: 10.1016/0024-3795(87)90217-5 · Zbl 0612.15006
[13] DOI: 10.1016/j.laa.2003.12.039 · Zbl 1058.15015
[14] DOI: 10.1007/s10114-004-0493-1 · Zbl 1083.15021
[15] DOI: 10.1016/j.camwa.2005.01.014 · Zbl 1138.15003
[16] DOI: 10.1016/j.camwa.2004.12.002 · Zbl 1138.15004
[17] DOI: 10.1016/j.amc.2007.05.021 · Zbl 1149.15011
[18] Wang Q. W., India J. Pure Appl. Math. 36 pp 655–
[19] DOI: 10.1016/j.amc.2006.06.012 · Zbl 1108.15014
[20] DOI: 10.1016/j.amc.2007.05.018 · Zbl 1149.15012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.