×

zbMATH — the first resource for mathematics

Geometric criteria for holomorphy of functions. (English. Russian original) Zbl 1176.31003
Dokl. Math. 79, No. 3, 428-429 (2009); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 426, No. 6, 738-739 (2009).
MSC:
31A05 Harmonic, subharmonic, superharmonic functions in two dimensions
30A99 General properties of functions of one complex variable
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. K. Dzyadyk, Usp. Mat. Nauk 15(1), 191–194 (1960).
[2] A. Goodman, Am. Math. Monthly 71, 265–267 (1964). · Zbl 0122.31602 · doi:10.2307/2312181
[3] Yu. Yu. Trokhimchuk, Ukr. Mat. Zh. 59(10), 1410–1418 (2007). · Zbl 1164.30300 · doi:10.1007/s11253-008-0008-9
[4] V. V. Volchkov, Integral Geometry and Convolution Equations (Kluwer, Dordrecht, 2003). · Zbl 1043.53003
[5] V. V. Volchkov, Mat. Zametki 60(6), 804–809 (1996). · doi:10.4213/mzm1898
[6] L. Zalcman, in Approximation by Solutions of Partial Differential Equations (Kluwer, Dordrecht, 1992), pp. 185–194. · Zbl 0830.26005
[7] L. Zalcman, Contemp. Math. 278, 69–74 (2001). · doi:10.1090/conm/278/04595
[8] C. A. Berenstein and D. C. Struppa, in Encyclopedia of Mathematical Sciences (Springer, Berlin, 1993), Vol. 54, pp. 1–108.
[9] S. Helgason, Groups and Geometric Analysis (Academic, Orlando, FL, 1984; Mir, Moscow, 1987). · Zbl 0543.58001
[10] V. V. Volchkov, Mat. Zametki 53(2), 30–36 (1993).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.