## Analysis of fractional differential equations with multi-orders.(English)Zbl 1176.34008

Summary: We study two kinds of fractional differential systems with multi-orders. One is a system of fractional differential equations with multi-order, $$D^{\bar {\alpha }}_* \bar x (t) = \bar f (t,\bar x), \bar x (0) = \bar x_0$$; the other is a multi-order fractional differential equation, $$D^{\beta ^*}_* y(t) = g (t,y(t)), D^{\beta _1}_* y(t), \cdots , D^{\beta _n}_* y(t)$$. By the derived technique, such two kinds of fractional differential equations can be changed into equations with the same fractional orders providing that the multi-orders are rational numbers, so the known theorems of existence, uniqueness and dependence upon initial conditions are easily applied. And asymptotic stability theorems for their associate linear systems, $$D^{\bar {\alpha }}_* \bar x (t) = A\bar x (t),\bar x(0) = \bar x(0)$$, and $$D^{\beta 1*}_* y(t) = a_0 y(t) + \sum ^n_{i=1} a_i D^{\beta _i}_* y(t), y^{(k)} (0) = y^{(k)}_0, k = 0, 1, \cdots , \lceil \beta ^* \rceil - 1$$, are also derived.

### MSC:

 34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc. 34M99 Ordinary differential equations in the complex domain
Full Text:

### References:

 [1] Miller K. S., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993) · Zbl 0789.26002 [2] Podlubny I., Fractional Differential Equations (1999) · Zbl 0924.34008 [3] DOI: 10.1142/9789812817747_0001 [4] Oustlaoup A., Systèm Asservis d’Ordre Fractionnaire (1983) [5] DOI: 10.1006/jmaa.2000.7194 [6] DOI: 10.1016/S0096-3003(03)00739-2 · Zbl 1060.65070 [7] DOI: 10.1016/j.jmaa.2004.01.013 · Zbl 1058.34002 [8] Edwards J. T., J. Math. Anal. Appl. 148 pp 401– [9] DOI: 10.1016/S0096-3003(02)00136-4 · Zbl 1034.34070 [10] DOI: 10.1016/S0167-6911(00)00050-5 · Zbl 0985.93048 [11] DOI: 10.1016/j.physd.2005.09.012 · Zbl 1094.34034 [12] DOI: 10.1142/S0218348X06003337 · Zbl 1147.34042 [13] DOI: 10.1016/j.jmaa.2006.06.007 · Zbl 1115.34006 [14] DOI: 10.1016/j.amc.2006.08.163 · Zbl 1125.26009 [15] DOI: 10.1007/s00607-003-0033-3 · Zbl 1035.65066 [16] Guelfand I. M., Les Distribution 1 (1972) [17] Schwartz L., Mèthods Mathèmatiques Pour les Sciences Physiques (1985) [18] DOI: 10.1007/s11071-006-9094-0 · Zbl 1185.34115 [19] Li C. P., Chaos Solitons and Fractals 14 pp 443–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.