zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analysis of fractional differential equations with multi-orders. (English) Zbl 1176.34008
Summary: We study two kinds of fractional differential systems with multi-orders. One is a system of fractional differential equations with multi-order, $D^{\bar {\alpha }}_* \bar x (t) = \bar f (t,\bar x), \bar x (0) = \bar x_0$; the other is a multi-order fractional differential equation, $D^{\beta ^*}_* y(t) = g (t,y(t)), D^{\beta _1}_* y(t), \cdots , D^{\beta _n}_* y(t)$. By the derived technique, such two kinds of fractional differential equations can be changed into equations with the same fractional orders providing that the multi-orders are rational numbers, so the known theorems of existence, uniqueness and dependence upon initial conditions are easily applied. And asymptotic stability theorems for their associate linear systems, $D^{\bar {\alpha }}_* \bar x (t) = A\bar x (t),\bar x(0) = \bar x(0)$, and $D^{\beta 1*}_* y(t) = a_0 y(t) + \sum ^n_{i=1} a_i D^{\beta _i}_* y(t), y^{(k)} (0) = y^{(k)}_0, k = 0, 1, \cdots , \lceil \beta ^* \rceil - 1$, are also derived.

34A25Analytical theory of ODE (series, transformations, transforms, operational calculus, etc.)
34M99Differential equations in the complex domain
Full Text: DOI