zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and nonexistence of positive solutions for a class of $n$th-order three-point boundary value problems in Banach spaces. (English) Zbl 1176.34030
The authors study the existence, nonexistence, and multiplicity of positive solutions to a nonlinear three-point boundary value problem for a differential equation of order $n$ in an ordered Banach space. The boundary value problem has the form $$x^{(n)}(t)+ f(t, x(t), x'(t),\dots, x^{(n-2)}(t))= \theta,\quad t\in [0,1],$$ $$x^{(i)}(0)= \theta,\quad i= 0,1,\dots, n-2,$$ $$x^{(n-2)}(1)= \rho x^{(n-2)}(\eta),$$ where $\rho,\eta\in (0,1)$, and $\theta$ is the zero element of the Banach space. The proofs employ fixed-point theory in cones.

MSC:
34B18Positive solutions of nonlinear boundary value problems for ODE
34B15Nonlinear boundary value problems for ODE
34G20Nonlinear ODE in abstract spaces
34B10Nonlocal and multipoint boundary value problems for ODE
47N20Applications of operator theory to differential and integral equations
WorldCat.org
Full Text: DOI
References:
[1] Gupta, C. P.: A generalized multi-point boundary value problem for second order ordinary differential equations. Appl. math. Comput. 89, 133-146 (1998) · Zbl 0910.34032
[2] Gupta, C. P.; Ntouyas, S. K.; Tsamatos, P. Ch.: Solvability of an m-point boundary value problem for second order ordinary differential equations. J. math. Anal. appl. 189, 575-584 (1995) · Zbl 0819.34012
[3] Chen, S.; Hu, J.; Chen, L.; Wang, C.: Existence results for n-point boundary value problem of second ordinary differential equations. J. comput. Appl. math. 180, 425-432 (2005) · Zbl 1069.34011
[4] Zhang, Z.; Wang, J.: The upper and lower solution method for a class of singular nonlinear second order three-point boundary value problems. J. comput. Appl. math. 147, 41-52 (2002) · Zbl 1019.34021
[5] Agarwal, R. P.; O’regan, D.: Right focal singular boundary value problems. Z. angew. Math. mech. 79, 363-373 (1999) · Zbl 0930.34013
[6] Agarwal, R. P.; O’regan, D.: Multiplicity results for singular conjugate, focal, and (n,p) problems. J. differential equations 170, 142-156 (2001) · Zbl 0978.34018
[7] Agarwal, R. P.: Focal boundary value problems for differential and difference equations. (1998) · Zbl 0914.34001
[8] Agarwal, R. P.; O’regan, D.; Wong, P. J. Y.: Positive solutions of differential, difference and integral equations. (1999)
[9] Eloe, P. W.; Ahmad, B.: Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions. Appl. math. Lett. 18, 521-527 (2005) · Zbl 1074.34022
[10] Graef, J. R.; Henderson, J.; Yang, B.: Positive solutions of a nonlinear higher order boundary-value problem. Electron. J. Differential equations 2007, No. 45, 1-10 (2007) · Zbl 1117.34023
[11] Guo, D. J.; Lakshmikantham, V.: Multiple solutions of two-point boundary value problems of ordinary differential equations in Banach spaces. J. math. Anal. appl. 129, 211-222 (1988) · Zbl 0645.34014
[12] Guo, D. J.; Lakshmikantham, V.; Liu, X. Z.: Nonlinear integral equations in abstract spaces. (1996) · Zbl 0866.45004
[13] Guo, D. J.; Lakshmikantham, V.: Nonlinear problems in abstract cones. (1988) · Zbl 0661.47045
[14] Lakshmikanthan, V.; Leela, S.: Nonlinear differential equations in abstract spaces. (1981)
[15] Guo, D. J.: Multiple positive solutions for first order nonlinear impulsive integro-differential equations in a banachspace. Appl. math. Comput. 143, 233-249 (2003) · Zbl 1030.45009
[16] Ma, R.; Wang, H.: Positive solutions of nonlinear three-point boundary-value problems. J. math. Anal. appl. 279, 216-227 (2003) · Zbl 1028.34014
[17] Ma, R.: Positive solutions for second order three-point boundary value problems. Appl. math. Lett. 14, 1-5 (2001) · Zbl 0989.34009
[18] Wei, Z.; Pang, C.: Positive solutions of some singular m-point boundary value problems at nonresonance. Appl. math. Comput. 171, 433-449 (2005) · Zbl 1085.34017
[19] Pang, C.; Dong, W.; Wei, Z.: Green’s function and positive solutions of nth order m-point boundary value problem. Appl. math. Comput. 182, 1231-1239 (2006) · Zbl 1111.34024
[20] Liu, Y.: Multiple positive solutions to fourth-order singular boundary value problems in abstract space. Electron. J. Differential equations 2004, No. 120, 1-13 (2004) · Zbl 1076.34068
[21] Feng, M.; Zhang, X.: Multiple solutions of two-point boundary value problem of fourth-order ordinary differential equations in Banach space. Acta anal. Funct. appl. 6, 56-64 (2004) · Zbl 1102.34307
[22] Feng, M.; Ge, W.: Positive solutions for a class of m-point singular boundary value problems. Math. comput. Modelling 46, 375-383 (2007) · Zbl 1142.34012
[23] Zhao, Y.; Chen, H.: Existence of multiple positive solutions for m-point boundary value problems in Banach spaces. J. comput. Appl. math. (2007)
[24] Liu, B.: Positive solutions of a nonlinear four-point boundary value problems in Banach spaces. J. math. Anal. appl. 305, 253-276 (2005) · Zbl 1073.34075
[25] Cheung, W.; Ren, J.: Positive solutions for m-point boundary-value problems. J. math. Anal. appl. 303, 565-575 (2005) · Zbl 1071.34020
[26] Liu, Y.; Ge, W.: Positive solutions for (n-1,1) three-point boundary value problem with coefficient that changes sign. J. math. Anal. appl. 282, 816-825 (2003) · Zbl 1033.34031
[27] Guo, Y.: Positive solutions for three-point boundary value problems with dependence on the first order derivatives. J. math. Anal. appl. 290, 291-301 (2004) · Zbl 1054.34025
[28] Guo, Y.; Shan, W.; Ge, W.: Positive solutions for second-order m-point boundary value problems. J. comput. Appl. math. 151, 415-424 (2003) · Zbl 1026.34016
[29] Liu, X.; Qiu, J.; Guo, Y.: Three positive solutions for second-order m-point boundary value problems. Appl. math. Comput. 156, 733-742 (2004) · Zbl 1069.34014
[30] Guo, Y.; Liu, X.; Qiu, J.: Three positive solutions for higher order m point boundary value problems. J. math. Anal. appl. 289, 545-553 (2004) · Zbl 1046.34028
[31] Zhang, G.; Sun, J.: Positive solutions of m-point boundary value problems. J. math. Anal. appl. 291, 406-418 (2004) · Zbl 1069.34037