zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Periodic boundary value problems of second-order impulsive differential equations. (English) Zbl 1176.34032
Sufficient conditions are obtained for the existence of solutions to periodic boundary value problem for second-order impulsive differential equations. The problems have the form $$x''(t)= f(t,x(t), x'(t)),$$ $$\Delta x(t_k)= I_k(x(t_k)),\ \Delta x'(t_k)= I^*_k(x'(t_k)),$$ $$x(0)= x(T),\quad x'(0)= x'(T).$$ Here, $k= 1,2,\dots, p$, the functions $I_k$, $I^*_k$ are continuous, $\Delta x(t_k)= x(t^+_k)- x(t_k)$, $$\Delta x'(t_k)= x'(t^+_k)- x'(t_k),$$ the right-hand side $f$ satisfies the Carathéodory conditions. Monotone iterative technique is employed.

MSC:
34B37Boundary value problems for ODE with impulses
34A45Theoretical approximation of solutions of ODE
WorldCat.org
Full Text: DOI
References:
[1] Agarwal, R. P.; O’regan, D.: Infinite interval problems for differential, difference and integral equations. (2001)
[2] Cabada, Alberto: The method of lower and upper solutions for second, third, fourth and higher order boundary value problems. J. math. Anal. appl. 185, 302-320 (1994) · Zbl 0807.34023
[3] Cabada, Alberto; Nieto, J. J.: A generalization of the monotone iterative technique for nonlinear second order periodic boundary value problems. J. math. Anal. appl. 151, 181-189 (1990) · Zbl 0719.34039
[4] Cabada, Alberto; Nieto, J. J.: Extremal solutions of second order nonlinear periodic boundary value problems. Appl. math. Comput. 40, 135-145 (1990) · Zbl 0723.65056
[5] Chen, Lijing; Sun, Jitao: Nonlinear boundary value problem of first order impulsive functional differential equations. J. math. Anal. appl. 318, 726-741 (2006) · Zbl 1102.34052
[6] Chen, Lijing; Sun, Jitao: Boundary value problem of second order impulsive functional differential equations. J. math. Anal. appl. 323, 708-720 (2006) · Zbl 1111.34047
[7] Chen, Lijing; Sun, Jitao: Nonlinear boundary problem of first order impulsive integro-differential equations. J. comput. Appl. math. 202, 392-401 (2007) · Zbl 1122.45007
[8] Ding, Wei; Han, Maoan: Periodic boundary value problem for the second order impulsive functional differential equations. Appl. math. Comput. 155, 709-726 (2004) · Zbl 1064.34067
[9] Ding, Wei; Han, Maoan; Mi, Junrong: Periodic boundary value problem for the second-order impulsive functional differential equations. Comput. math. Appl. 50, 491-507 (2005) · Zbl 1095.34042
[10] Gao, W. J.; Wang, J. Y.: On a nonlinear second order periodic boundary value problem with Carathéodory functions. Ann. polon. Math. 62, 283-291 (1995) · Zbl 0839.34031
[11] He, Zhimin; Yu, Jianshe: Periodic boundary value problem for first-order impulsive ordinary differential equations. J. math. Anal. appl. 272, 67-78 (2002) · Zbl 1016.34023
[12] Jankowski, T.: Existence of solutions of boundary value problems for differential equations with delayed arguments. J. comput. Appl. math. 156, 239-252 (2003) · Zbl 1048.34107
[13] Jankowski, T.: Monotone method for second-order delayed differential equations with boundary value conditions. Appl. math. Comput. 149, 589-598 (2004) · Zbl 1039.34058
[14] Jankowski, T.: Existence of solutions for second order impulsive differential equations with deviating arguments. Nonlinear anal. 67, 1764-1774 (2007) · Zbl 1127.34037
[15] Jiang, Daqing; Nieto, Juan J.; Zuo, Wenjie: On monotone method for first and second order periodic boundary value problems and periodic solutions of functional differential equations. J. math. Anal. appl. 289, 691-699 (2004) · Zbl 1134.34322
[16] Jiang, Daqing; Wei, Junjie: Monotone method for first- and second-order periodic boundary value problems and periodic solutions of functional differential equations. Nonlinear anal. 50, 885-898 (2002) · Zbl 1014.34049
[17] Jiang, Daqing; Fan, Meng; Wan, Aying: A monotone method for constructing extremal solutions to second-order periodic boundary value problems. J. comput. Appl. math. 136, 189-197 (2001) · Zbl 0993.34011
[18] Khan, Rahmat Ali; Rafique, M.: Existence and multiplicity results for some three-point boundary value problems. Nonlinear anal. 66, 1686-1697 (2007) · Zbl 1117.34009
[19] Ladde, G. S.; Lakshmikantham, V.; Vatsala, A. S.: Monotone iterative techniques for nonlinear differential equations. (1985) · Zbl 0658.35003
[20] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations. (1989) · Zbl 0719.34002
[21] Nieto, J. J.: Nonlinear second order periodic boundary problems with Carathéodory functions. Appl. anal. 34, 111-128 (1989) · Zbl 0662.34022
[22] Rachunková, Irena; Tvrdý, Milan: Existence results for impulsive second-order periodic problems. Nonlinear anal. 59, 133-146 (2004) · Zbl 1084.34031
[23] Samoilenko, A. M.; Perestyuk, N. A.: Impulsive differential equations. (1995) · Zbl 0837.34003
[24] Wang, M. X.; Cabada, A.; Nieto, J. J.: Monotone method for nonlinear second-order periodic boundary value problems with Carathéodory functions. Ann. polon. Math. 58, 221-235 (1993) · Zbl 0789.34027
[25] Yang, Xuxin; Shen, Jianhua: Periodic boundary value problems for second-order impulsive integro-differential equations. J. comput. Appl. math. (2006) · Zbl 1155.45007