zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos control of new Mathieu-Van der Pol systems with new Mathieu-Duffing systems as functional system by GYC partial region stability theory. (English) Zbl 1176.34072
Summary: A new strategy by using GYC partial region stability theory is proposed to achieve chaos control. Using the GYC partial region stability theory, the new Lyapunov function used is a simple linear homogeneous function of error states and the lower order controllers are much more simple and introduce less simulation error. Numerical simulations are given for new Mathieu-Van der Pol system and new Mathieu-Duffing system to show the effectiveness of this strategy.

34H05ODE in connection with control problems
34C28Complex behavior, chaotic systems (ODE)
Full Text: DOI
[1] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos. Physical review letters 64, 1196-1199 (1990) · Zbl 0964.37501
[2] Hu, H. Y.: An adaptive control scheme for recovering periodic motion of chaotic systems. Journal of sound and vibration 199, 269-274 (1997) · Zbl 1235.93136
[3] Yan, Jun-Juh; Hung, Meei-Ling; Liao, Teh-Lu: Adaptive sliding mode control for synchronization of chaotic gyros with fully unknown parameters. Journal of sound and vibration 298, 298-306 (2006) · Zbl 1243.93097
[4] Chen, Heng-Hui: Adaptive synchronization of chaotic systems via linear balanced feedback control. Journal of sound and vibration 306, 865-876 (2007) · Zbl 1113.93047
[5] Sun, Mei; Tian, Lixin; Jiang, Shumin; Xu, Jun: Feedback control and adaptive control of the energy resource chaotic system. Chaos, solitons and fractals 32, 1725-1734 (2007) · Zbl 1129.93403
[6] Yang, T.; Yang, L. B.; Yang, C. M.: Theory of control of chaos using sample data. Physics letters A 246, 284-288 (1998) · Zbl 0782.30025
[7] Yang, T.; Yang, C. M.; Yang, L. B.: Control of Rössler system to periodic motions using impulsive control method. Physics letters A 232, 356-361 (1997) · Zbl 1053.93507
[8] Yassen, M. T.: Chaos synchronization between two different chaotic system using active control. Chaos, solitons and fractals 23, 131-140 (2005) · Zbl 1091.93520
[9] Fang, Tang; Wang, Ling: An adaptive active control for the modified Chua’s circuit. Physics letters A 346, 342-346 (2005) · Zbl 1195.94105
[10] Rafikov, Marat; Manoel, José; Balthazar: On control and synchronization in chaotic and hyperchaotic systems via linear feedback control. Communications in nonlinear science and numerical simulation 13, 1246-1255 (2008) · Zbl 1221.93230
[11] Ge, Z. -M.; Chen, H. -H.: Double degeneracy and chaos in a rate gyro with feedback control. Journal of sound and vibration 209, 753-769 (1998) · Zbl 1235.70216
[12] Ge, Z. -M.; Yao, C. -W.; Chen, H. -K.: Stability on partial region in dynamics. Journal of chinese society of mechanical engineer 15, 140-151 (1994)
[13] Ge, Z. -M.; Chen, H. -K.: Three asymptotical stability theorems on partial region with applications. Japanese journal of applied physics 37, 2762-2773 (1998)
[14] Ge, Z. -M.; Yang, C. -H.; Chen, H. -H.; Lee, S. -C.: Non-linear dynamics and chaos control of a physical pendulum with vibrating and rotation support. Journal of sound and vibration 242, 247-264 (2001)
[15] Ge, Z. -M.; Yu, J. -K.: Pragmatical asymptotical stability theorem on partial region and for partial variable with applications to gyroscopic systems. The chinese journal of mechanics 16, 179-187 (2000)
[16] Ge, Z. -M.; Chang, C. -M.: Chaos synchronization and parameters identification of single time scale brushless DC motors. Chaos, solitons and fractals 20, 883-903 (2004) · Zbl 1071.34048
[17] Liu, F.; Ren, Y.; Shan, X.; Qiu, Z.: A linear feedback synchronization theorem for a class of chaotic systems. Chaos, solitons and fractals 13, 723-730 (2002) · Zbl 1032.34045
[18] Ge, Z. -M.; Yang, C. -H.: Generalized synchronization of quantum-CNN chaotic oscillator with different order systems. Chaos, solitons and fractals 35, 980-990 (2008) · Zbl 1141.37017
[19] Krawiecki, A.; Sukiennicki, A.: Generalizations of the concept of marginal synchronization of chaos. Chaos, solitons and fractals 11, 1445-1458 (2000) · Zbl 0982.37022
[20] Ge, Z. -M.; Yang, C. -H.: Synchronization of complex chaotic systems in series expansion form. Chaos, solitons, and fractals 34, 1649-1658 (2007) · Zbl 1152.37314
[21] Ge, Z. -M.; Chen, Y. -S.: Synchronization of unidirectional coupled chaotic systems via partial stability. Chaos, solitons and fractals 21, 101 (2004) · Zbl 1048.37027
[22] Bowong, Samuel; Kakmeni, F. M. Moukam; Luc, Dimi Jean: Chaos control in the uncertain Duffing oscillator. Journal of sound and vibration 292, 869-880 (2006) · Zbl 1243.93086