zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A model in a coupled system of simple neural oscillators with delays. (English) Zbl 1176.34087
A coupled system of simple neural oscillators with delays is studied. The authors prove that there is fully symmetric solution which loses stability as a parameter varies, and this loss of stability is due to the crossing of imaginary eigenvalues through the imaginary axis. So, Hopf bifurcation to periodic solutions appears. Moreover, spatio-temporal patterns appear as mirror-reflecting waves, standing waves, etc. which can be seen from the computer simulations.

34K18Bifurcation theory of functional differential equations
92B20General theory of neural networks (mathematical biology)
34K20Stability theory of functional-differential equations
34K13Periodic solutions of functional differential equations
Full Text: DOI
[1] Atay, F. M.: Oscillator death in coupled functional differential equations near Hopf bifurcation, Journal of differential equations 221, 190-209 (2006) · Zbl 1099.34066 · doi:10.1016/j.jde.2005.01.007
[2] Dias, Ana Paula S.; Lamb, Jeroen S. W.: Local bifurcation in symmetric coupled cell networks: linear theory, Physica D 223, No. 1, 93-108 (2006) · Zbl 1112.34025 · doi:10.1016/j.physd.2006.08.014
[3] Golubitsky, M.; Stewart, I. N.; Schaeffer, D. G.: Singularities and groups in bifurcation theory: vol. 2, Appl. math. Sci. 69 (1988) · Zbl 0691.58003
[4] Guo, S.; Huang, L.: Hopf bifurcating periodic orbits in a ring of neurons with delays, Physica D 183, 19-44 (2003) · Zbl 1041.68079 · doi:10.1016/S0167-2789(03)00159-3
[5] Krawcewicz, W.; Wu, J.: Theory and applications of Hopf bifurcations in symmetric functional differential equations, Nonlinear analysis 35, No. 37, 845-870 (1999) · Zbl 0917.58027 · doi:10.1016/S0362-546X(97)00711-6
[6] Peng, M.: Bifurcation and stability analysis of nonlinear waves in symmetric delay differential systems, J. differential equations 232, No. 2, 521-543 (2007) · Zbl 1118.34067 · doi:10.1016/j.jde.2006.09.010
[7] Drubi, Fátima; Ibáñez, Santiago; Rodríguez, J. Ángel: Coupling leads to chaos, J. differential equations 239, 371-385 (2007) · Zbl 1133.34027 · doi:10.1016/j.jde.2007.05.024
[8] Tachikawa, M.: Specific locking in populations dynamics: symmetry analysis for coupled heteroclinic cycles, Journal of computational and applied mathematics 201, 374-380 (2007) · Zbl 1121.34044 · doi:10.1016/j.cam.2005.12.037
[9] Wu, J.: Symmetric functional differential equations and neural networks with memory, Transactions of the American mathematical society 350, No. 12, 4799-4838 (1998) · Zbl 0905.34034 · doi:10.1090/S0002-9947-98-02083-2
[10] Wang, L.; Zou, Xi.: Hopf bifurcation in bidirectional associative memory neural networks with delays: analysis and computation, Journal of computational and applied mathematics 167, 73-90 (2004) · Zbl 1054.65076 · doi:10.1016/j.cam.2003.09.047
[11] Yuri, A. K.: Elements of applied bifurcation theory, (1995) · Zbl 0829.58029
[12] Zhang, C.; Zheng, B.: Stability and bifurcation of a two-dimension discrete neural network model with multi-delays, Chaos, solitons and fractals 31, 1232-1242 (2007) · Zbl 1141.39013 · doi:10.1016/j.chaos.2005.10.074