×

zbMATH — the first resource for mathematics

Building an extended resolvent of the heat operator via twisting transformations. (English. Russian original) Zbl 1176.35048
Theor. Math. Phys. 159, No. 3, 721-733 (2009); translation from Teor. Mat. Fiz. 159, No. 3, 364-378 (2009).
Summary: We introduce twisting transformations for the heat operator. By the simultaneous use of these transformations, \(N\) solitons are superimposed √† la Darboux on a generic smooth potential decaying at infinity, and the corresponding Jost solutions are generated. We also use these twisting operators to study the existence of the related extended resolvent. We study the existence and uniqueness of the extended resolvent in detail in the case of \(N\) solitons with \(N\) “incoming” rays and one “outgoing” ray.

MSC:
35C08 Soliton solutions
35K05 Heat equation
35Q51 Soliton equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. S. Dryuma, JETP Lett., 19, 387–388 (1974).
[2] V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl., 8, 226–235 (1974). · Zbl 0303.35024
[3] M. J. Ablowitz, D. Bar Yaacov, and A. S. Fokas, Stud. Appl. Math., 69, 135–143 (1983).
[4] G. Grinevich and P. S. Novikov, Funct. Anal. Appl, 22, 19–27 (1988). · Zbl 0672.35074
[5] M. Boiti, F. Pempinelli, A. K. Pogrebkov, and M. C. Polivanov, Inverse Problems, 8, 331–364 (1992). · Zbl 0755.35109
[6] M. Boiti, F. Pempinelli, A. K. Pogrebkov, and M. C. Polivanov, Theor. Math. Phys., 93, 1200–1224 (1992). · Zbl 0806.35131
[7] M. Boiti, F. Pempinelli, and A. K. Pogrebkov, J. Math. Phys., 35, 4683–4718 (1994). · Zbl 0814.35116
[8] M. Boiti, F. Pempinelli, and A. K. Pogrebkov, Inverse Problems, 13, L7–L10 (1997). · Zbl 0879.35133
[9] M. Boiti, F. Pempinelli, A. K. Pogrebkov, and B. Prinari, Theor. Math. Phys., 116, 741–781 (1998). · Zbl 0951.35118
[10] B. Prinari, Inverse Problems, 16, 589–603 (2000). · Zbl 0962.35158
[11] M. Boiti, F. Pempinelli, A. Pogrebkov, and B. Prinari, Inverse Problems, 17, 937–957 (2001). · Zbl 0988.35140
[12] M. Boiti, F. Pempinelli, A. K. Pogrebkov, and B. Prinari, J. Math. Phys., 43, 1044–1062 (2002). · Zbl 1059.35112
[13] M. Boiti, F. Pempinelli, A. K. Pogrebkov, and B. Prinari, Theor. Math. Phys., 144, 1100–1116 (2005). · Zbl 1178.37096
[14] M. Boiti, F. Pempinelli, A. K. Pogrebkov, and B. Prinari, Proc. Steklov Inst. Math., 251, 6–48 (2005).
[15] J. Villarroel and M. J. Ablowitz, Stud. Appl. Math., 109, 151–162 (2002). · Zbl 1152.35480
[16] M. Boiti, F. Pempinelli, and A. K. Pogrebkov, J. Phys. A, 39, 1877–1898 (2006). · Zbl 1091.81015
[17] M. Boiti, F. Pempinelli, and A. K. Pogrebkov, J. Math. Phys., 47, 123510 (2006).
[18] S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, and V. B. Matveev, Phys. Lett. A, 63, 205–206 (1977).
[19] G. Biondini and Y. Kodama, J. Phys. A, 36, 10519–10536 (2003). · Zbl 1116.37316
[20] G. Biondini and S. Chakravarty, J. Math. Phys., 47, 033514 (2006).
[21] G. Biondini, Phys. Rev. Lett., 99, 064103 (2007).
[22] S. Chakravarty and Y. Kodama, J. Phys. A, 41, 275209 (2008). · Zbl 1184.37051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.