Shaabani, M. Haji; Khani Robati, B. On the norm of certain weighted composition operators on the Hardy space. (English) Zbl 1176.47023 Abstr. Appl. Anal. 2009, Article ID 720217, 13 p. (2009). Summary: We obtain a representation for the norm of certain compact weighted composition operator \(C_{\psi ,\varphi }\) on the Hardy space \(H^{2}\), whenever \(\varphi (z)=az+b\) and \(\psi (z)=az - b\). We also estimate the norm and essential norm of a class of noncompact weighted composition operators under certain conditions on \(\varphi \) and \(\psi \). Moreover, we characterize the norm and essential norm of such operators in a special case. Cited in 7 Documents MSC: 47B33 Linear composition operators 46E15 Banach spaces of continuous, differentiable or analytic functions 30H10 Hardy spaces × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] C. C. Cowen, “Composition operators on H2,” Journal of Operator Theory, vol. 9, no. 1, pp. 77-106, 1983. · Zbl 0504.47032 [2] E. A. Nordgren, “Composition operators,” Canadian Journal of Mathematics, vol. 20, pp. 442-449, 1968. · Zbl 0161.34703 · doi:10.4153/CJM-1968-040-4 [3] C. C. Cowen, “Linear fractional composition operators on H2,” Integral Equations and Operator Theory, vol. 11, no. 2, pp. 151-160, 1988. · Zbl 0638.47027 · doi:10.1007/BF01272115 [4] C. C. Cowen and T. L. Kriete III, “Subnormality and composition operators on H2,” Journal of Functional Analysis, vol. 81, no. 2, pp. 298-319, 1988. · Zbl 0669.47012 · doi:10.1016/0022-1236(88)90102-4 [5] C. Hammond, “On the norm of a composition operator with linear fractional symbol,” Acta Universitatis Szegediensis, vol. 69, no. 3-4, pp. 813-829, 2003. · Zbl 1071.47508 [6] P. S. Bourdon, E. E. Fry, C. Hammond, and C. H. Spofford, “Norms of linear-fractional composition operators,” Transactions of the American Mathematical Society, vol. 356, no. 6, pp. 2459-2480, 2004. · Zbl 1038.47500 · doi:10.1090/S0002-9947-03-03374-9 [7] E. L. Basor and D. Q. Retsek, “Extremal non-compactness of composition operators with linear fractional symbol,” Journal of Mathematical Analysis and Applications, vol. 322, no. 2, pp. 749-763, 2006. · Zbl 1108.47024 · doi:10.1016/j.jmaa.2005.09.018 [8] C. Hammond, “Zeros of hypergeometric functions and the norm of a composition operator,” Computational Methods and Function Theory, vol. 6, no. 1, pp. 37-50, 2006. · Zbl 1111.47027 · doi:10.1007/BF03321116 [9] S. Effinger-Dean, A. Johnson, J. Reed, and J. Shapiro, “Norms of composition operators with rational symbol,” Journal of Mathematical Analysis and Applications, vol. 324, no. 2, pp. 1062-1072, 2006. · Zbl 1107.47018 · doi:10.1016/j.jmaa.2006.01.005 [10] S. Stević, “Norm of weighted composition operators from Bloch space to H\mu \infty on the unit ball,” Ars Combinatoria, vol. 88, pp. 125-127, 2008. · Zbl 1224.30195 [11] S. Stević, “Norms of some operators from Bergman spaces to weighted and Bloch-type spaces,” Utilitas Mathematica, vol. 76, pp. 59-64, 2008. · Zbl 1160.47027 [12] S. Stević, “Weighted composition operators from weighted Bergman spaces to weighted-type spaces on the unit ball,” Applied Mathematics and Computation, vol. 212, no. 2, pp. 499-504, 2009. · Zbl 1186.47020 · doi:10.1016/j.amc.2009.02.057 [13] S. Stević, “Norm and essential norm of composition followed by differentiation from \alpha -Bloch spaces to H\mu \infty ,” Applied Mathematics and Computation, vol. 207, no. 1, pp. 225-229, 2009. · Zbl 1157.47026 · doi:10.1016/j.amc.2008.10.032 [14] E. Wolf, “Weighted composition operators between weighted Bergman spaces and weighted Banach spaces of holomorphic functions,” Revista Matemática Complutense, vol. 21, no. 2, pp. 475-480, 2008. · Zbl 1161.47018 · doi:10.5209/rev_REMA.2008.v21.n2.16402 [15] F. Forelli, “The isometries of Hp,” Canadian Journal of Mathematics, vol. 16, pp. 721-728, 1964. · Zbl 0132.09403 · doi:10.4153/CJM-1964-068-3 [16] J. H. Clifford and M. G. Dabkowski, “Singular values and Schmidt pairs of composition operators on the Hardy space,” Journal of Mathematical Analysis and Applications, vol. 305, no. 1, pp. 183-196, 2005. · Zbl 1066.47026 · doi:10.1016/j.jmaa.2004.11.014 [17] Z.-S. Fang and Z.-H. Zhou, “Differences of composition operators on the space of bounded analytic functions in the polydisc,” Abstract and Applied Analysis, vol. 2008, Article ID 983132, 10 pages, 2008. · Zbl 1160.32009 · doi:10.1155/2008/983132 [18] X. Fu and X. Zhu, “Weighted composition operators on some weighted spaces in the unit ball,” Abstract and Applied Analysis, vol. 2008, Article ID 605807, 8 pages, 2008. · Zbl 1160.47024 · doi:10.1155/2008/605807 [19] S. Li and S. Stević, “Weighted composition operators from H\infty to the Bloch space on the polydisc,” Abstract and Applied Analysis, vol. 2007, Article ID 48478, 13 pages, 2007. · Zbl 1152.47016 · doi:10.1155/2007/48478 [20] S. Li and S. Stević, “Weighted composition operators from Zygmund spaces into Bloch spaces,” Applied Mathematics and Computation, vol. 206, no. 2, pp. 825-831, 2008. · Zbl 1215.47022 · doi:10.1016/j.amc.2008.10.006 [21] L. Luo and S. Ueki, “Weighted composition operators between weighted Bergman spaces and Hardy spaces on the unit ball of Cn,” Journal of Mathematical Analysis and Applications, vol. 326, no. 1, pp. 88-100, 2007. · Zbl 1114.32003 · doi:10.1016/j.jmaa.2006.02.038 [22] B. D. MacCluer and R. Zhao, “Essential norms of weighted composition operators between Bloch-type spaces,” The Rocky Mountain Journal of Mathematics, vol. 33, no. 4, pp. 1437-1458, 2003. · Zbl 1061.30023 · doi:10.1216/rmjm/1181075473 [23] J. H. Shapiro and W. Smith, “Hardy spaces that support no compact composition operators,” Journal of Functional Analysis, vol. 205, no. 1, pp. 62-89, 2003. · Zbl 1041.46019 · doi:10.1016/S0022-1236(03)00215-5 [24] S. Stević, “Weighted composition operators between mixed norm spaces and H\alpha \infty spaces in the unit ball,” Journal of Inequalities and Applications, vol. 2007, Article ID 28629, 9 pages, 2007. · Zbl 1138.47019 · doi:10.1155/2007/28629 [25] S. Stević, “Essential norms of weighted composition operators from the \alpha -Bloch space to a weighted-type space on the unit ball,” Abstract and Applied Analysis, vol. 2008, Article ID 279691, 11 pages, 2008. · Zbl 1160.32011 · doi:10.1155/2008/279691 [26] S.-I. Ueki and L. Luo, “Compact weighted composition operators and multiplication operators between Hardy spaces,” Abstract and Applied Analysis, vol. 2008, Article ID 196498, 12 pages, 2008. · Zbl 1167.47020 · doi:10.1155/2008/196498 [27] X. Zhu, “Weighted composition operators from F(p,q,s)spaces to H\mu \infty spaces,” Abstract and Applied Analysis, vol. 2009, Article ID 290978, 14 pages, 2009. · Zbl 1173.30037 · doi:10.1155/2009/290978 [28] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, Fla, USA, 1995. · Zbl 0873.47017 [29] G. Gunatillake, Weighted composition operators, Ph.D. thesis, Purdue University, West Lafayette, Ind, USA, 2005. · Zbl 1218.47037 [30] C. Hammond, “The norm of a composition operator with linear symbol acting on the Dirichlet space,” Journal of Mathematical Analysis and Applications, vol. 303, no. 2, pp. 499-508, 2005. · Zbl 1061.47023 · doi:10.1016/j.jmaa.2004.08.049 [31] P. S. Bourdon, D. Levi, S. K. Narayan, and J. H. Shapiro, “Which linear-fractional composition operators are essentially normal?” Journal of Mathematical Analysis and Applications, vol. 280, no. 1, pp. 30-53, 2003. · Zbl 1024.47008 · doi:10.1016/S0022-247X(03)00005-2 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.