×

zbMATH — the first resource for mathematics

Integrability of canonic affinor structures of homogeneous periodic \(\Phi \)-spaces. (English. Russian original) Zbl 1176.53052
Russ. Math. 52, No. 8, 35-47 (2008); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2008, No. 8, 43-57 (2008).
Summary: We study connections between the Lie bracket on the tangent space of a homogeneous periodic \(\Phi \)-space and the operators of canonical affinor structures of this space. The relations obtained allowed us to single out several cases of integrability of the structures under consideration.

MSC:
53C30 Differential geometry of homogeneous manifolds
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] N. A. Stepanov, ”Basic Facts of the Theory of \(\phi\)-Spaces,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 88–95 (1967).
[2] O. Kowalski, Generalized Symmetric Spaces (Springer, Berlin, 1980; Mir, Moscow, 1984). · Zbl 0431.53042
[3] N. A. Stepanov, ”Homogeneous 3-Cyclic Spaces,” Izv. Vyssh. Uchebn. Zaved.Mat, No. 12, 65–74 (1967). · Zbl 0162.25601
[4] J. A. Wolf and A. Gray, ”Homogeneous Spaces Defined by Lie Group Automorphisms,” J. Diff. Geom. 2(1–2), 77–159 (1968). · Zbl 0169.24103 · doi:10.4310/jdg/1214501139
[5] A. Gray, ”Riemannian Manifolds with Geodesic Symmetries of Order 3,” J.Diff. Geom. 7(3–4), 343–369 (1972). · Zbl 0275.53026 · doi:10.4310/jdg/1214431159
[6] N. A. Stepanov, ”Almost Complex Structures on \(\phi\)-Spaces,” in Abstracts of the 3rd Sci. Conf. on Problems of Geometry (Kazan, 1967), pp. 158–160.
[7] Gr. Tsagas and Ph. Xenos, ”Relation Between Almost Complex Structures and Lie Bracket for a Special Homogeneous Spaces,” Tensor 41(3), 278–284 (1984). · Zbl 0574.53034
[8] Ph. Xenos, ”Properties of the Homogeneous Spaces of Order Five,” Bull. of the Calcutta Math. Soc. 78(5), 293–302 (1986). · Zbl 0608.53044
[9] V. V. Balashchenko and Yu. D. Churbanov, ”Invariant Structures on Homogeneous \(\Phi\)-Spaces of Order 5,” Usp. Mat. Nauk 45(1), 169–170 (1990). · Zbl 0703.53028
[10] Yu. D. Churbanov, ”Geometry of Homogeneous \(\Phi\)-Spaces of Order 5,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 5, 70–81 (2002) [Russian Mathematics (Iz. VUZ) 46 (5), 68–79 (2002)]. · Zbl 1103.53026
[11] A. A. Ermolitskii, ”Periodic Affinors and 2k-symmetric Spaces,” Dokl. Belarus Akad. Nauk 34(2), 109–111 (1990). · Zbl 0702.53030
[12] V. V. Balashchenko and N. A. Stepanov, ”Canonical Affinor Structures of Classical Type on Regular \(\Phi\)-Spaces,” Matem Sborn. 186(11), 3–34 (1995). · Zbl 0872.53025
[13] Yu. D. Churbanov, ”The Geometry of Special Affinor Structures of Homogeneous \(\Phi\)-Spaces of Odd Orders,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 2, 84–86 (1994) [Russian Mathematics (Iz. VUZ) 40, (2), 82–84 (1994)]. · Zbl 0835.53057
[14] Yu. D. Churbanov, ”Classical Affinor Structures of Homogeneous \(\Phi\)-Spaces of Odd Order,” in Abstracts of the VII Belarus Math. Conf. Part 1 (Minsk, 1996), pp. 147–148.
[15] Yu. D. Churbanov, ”Affinor Structures of Classical Type of Homogeneous Periodic \(\Phi\)-Spaces,” in Abstracts of the VIII Belarus Math. Conf. Part 2 (Minsk, 2000), p. 131.
[16] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Interscience Publishers, NY, 1963; Nauka, Moscow, 1981), Vol. 1. · Zbl 0119.37502
[17] O. V. Dashevich, ”Canonical Structures of Classical Type on Regular \(\Phi\)-Spaces and Invariant Affine Connections,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 10, 23–31 (1998) [Russian Mathematics (Iz. VUZ) 42 (10), 21–29 (1998)]. · Zbl 0976.53036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.