×

Experimental determination of thermal conductivity of three nanofluids and development of new correlations. (English) Zbl 1176.80044

Summary: Experimental investigations have been carried out for determining the thermal conductivity of three nanofluids containing aluminum oxide, copper oxide and zinc oxide nanoparticles dispersed in a base fluid of 60:40 (by mass) ethylene glycol and water mixture. Particle volumetric concentration tested was up to 10% and the temperature range of the experiments was from 298 to 363 K. The results show an increase in the thermal conductivity of nanofluids compared to the base fluids with an increasing volumetric concentration of nanoparticles. The thermal conductivity also increases substantially with an increase in temperature. Several existing models for thermal conductivity were compared with the experimental data obtained from these nanofluids, and they do not exhibit good agreement. Therefore, a model was developed, which is a refinement of an existing model, which incorporates the classical Maxwell model and the Brownian motion effect to account for the thermal conductivity of nanofluids as a function of temperature, particle volumetric concentration, the properties of nanoparticles, and the base fluid, which agrees well with the experimental data.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
80-05 Experimental work for problems pertaining to classical thermodynamics
82D80 Statistical mechanics of nanostructures and nanoparticles
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Eastman, J. A.; Choi, S. U. S.; Li, S.; Yu, W.; Thompson, L. J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. phys. Lett. 78, No. 6, 718-720 (2001)
[2] Lee, S.; Choi, S. U. S.; Li, S.; Eastman, J.: Measuring thermal conductivity of fluids containing oxide nanoparticles, J. heat transfer 121, 280-289 (1999)
[3] Das, S.; Putra, N.; Thiesen, P.; Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids, J. heat transfer 125, 567-574 (2003)
[4] Yu, W.; Choi, S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. nanoparticle res. 5, 167-171 (2003)
[5] Wang, B-X.; Zhou, L. -P.; Peng, X. -F.: A fractal model for predicting the effective thermal conductivity of liquid suspension of nanoparticles, Int. J. Heat mass transfer 46, 2665-2672 (2003) · Zbl 1032.76703
[6] Koo, J.; Kleinstreuer, C.: A new thermal conductivity model for nanofluids, J. nanoparticle res. 6, 577-588 (2004)
[7] Koo, J.; Kleinstreuer, C.: Laminar nanofluid flow in microheat-sinks, Int. J. Heat mass transfer 48, 2652-2661 (2005) · Zbl 1189.76122
[8] Murshed, S. M. S.; Leong, K. C.; Yang, C.: Enhanced thermal conductivity of tio2-water based nanofluids, Int. J. Thermal sci. 44, 367-373 (2005)
[9] Hamilton, R.; Crosser, O.: Thermal conductivity of heterogeneous two-component systems, I and EC fundamentals 125, No. 3, 187-191 (1962)
[10] Bruggemen, D. A. G.: Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I. Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen, Ann. phys. Leipzig 24, 636-679 (1935)
[11] Xue, Q.; Xu, W.: A model of thermal conductivity of nanofluids with interfacial shells, Chem. phys. 90, 298-301 (2005)
[12] Chon, C. H.; Kihm, K. D.; Lee, S. P.; Choi, S. U. S.: Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. phys. Lett. 87, No. 15, 153107 (2005)
[13] Liu, M. S.; Lin, M. C. -C.; Tsai, C. Y.; Wang, C. -C.: Enhancement of thermal conductivity with cu for nanofluids using chemical reduction method, Int. J. Heat mass transfer 49, 3028-3033 (2006)
[14] Prasher, R.; Bhattacharya, P.; Phelan, P. E.: Brownian-motion-based convective – conductive model for the effective thermal conductivity of nanofluids, J. heat transfer 128, 588-595 (2006)
[15] Jang, S. P.; Choi, S. U. S.: Effects of various parameters on nanofluid thermal conductivity, J. heat transfer 129, 617-623 (2007)
[16] Li, C. H.; Williams, W.; Buongiorno, J.; Hu, L-W.; Peterson, G. P.: Transient and steady-state experimental comparison study of effective thermal conductivity of al2o3/water nanofluids, J. heat transfer 130, 042407 (2008)
[17] Wang, X. -Q.; Mujumdar, A. S.: Heat transfer characteristics of nanofluids: a review, Int. J. Thermal sci. 46, 1-19 (2007)
[18] ASHRAE Handbook, Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc., Atlanta, GA, 2005.
[19] Alfa Aesar. Available from: <http://www.alfaaesar.com/>, 2007.
[20] Incropera, F. P.; Dewitt, D. P.: Introduction to heat transfer, (1996)
[21] Bolz, R.; Tuve, G.: Handbook of tables for applied engineering science, (2007)
[22] Maxwell, J. C.: A treatise on electricity and magnetism, (1904) · JFM 05.0556.01
[23] Xuan, Y.; Li, Q.; Hu, W.: Aggregation structure and thermal conductivity of nanofluids, Aiche J. 49, No. 4, 1038-1043 (2003)
[24] R.S. Vajjha, D.K. Das, Measurement of thermal conductivity of Al2O3 nanofluid and development of a new correlation, in: T. Marbach (Ed.), Proceedings of 40th Heat Transfer and Fluid Mechanics Institute, Sacramento, CA, 2008, p.14.
[25] Yaws, C. L.: Physical properties – A guide to the physica thermodynamic and transport property data of industrially important chemical compounds, (1977)
[26] Experimental Operating and Maintenance Procedures for Thermal Conductivity of Liquids and Gases Unit, P.A. Hilton Ltd., Hampshire, England, 2005.
[27] Coleman, H. W.; Steele, W. G.: Experimentation and uncertainty analysis for engineers, (1999)
[28] The Data Acquisition Systems Handbook, Omega Engineering Inc., Stamford, CT, 2005.
[29] Bejan, A.; John, N.: Heat transfer, (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.